Abstract:
Methods and systems are provided for guiding or otherwise assisting a stabilized approach to a destination by presenting an energy state associated with an aircraft with respect to a target energy state for the stabilized approach. One method involves providing a graphical indication of a targeted energy state at a first position, a second graphical indication of a current energy state at a second position, and a third graphical indication of a configuration change at a third position. The distance with respect to a reference axis between the first position and the second position corresponds to a difference between a target parameter value associated with the targeted energy state and a current parameter value associated with the current energy state, and while a second distance between the first position and the third position with respect to the reference axis corresponds to an estimated amount of time before the configuration change.
Abstract:
A system and method for an improved aircraft information display is provided. The provided embodiments integrate and analyze relevant data from on-board and external sources to render airport availability and suitability information on the aircraft information display. The airport availability and suitability information displayed on the aircraft information display incorporates links between related information, is intuitively arranged on the aircraft information display, and dynamically updates responsive to changes in data and to user interaction.
Abstract:
A system and method for alerting an on-duty operator of the need to transfer operational control to an off-duty operator includes processing first and second physiological and activity data from the on-duty operator and the off-duty operator, respectively. The processor compares the fatigue state of the on-duty operator to a predetermined fatigue state threshold, and the rest state of the off-duty operator to a predetermined rest state threshold. The processor will generate an alert signal indicating that the on-duty operator should transfer operational control to the off-duty operator when (i) the fatigue state of the on-duty operator exceeds the predetermined fatigue state threshold or (ii) the rest state of the off-duty operator exceeds the predetermined rest state threshold.
Abstract:
A system and method for an improved aircraft information display is provided. The provided embodiments integrate and analyze relevant data from on-board and external sources to render airport availability and suitability information on the aircraft information display. The airport availability and suitability information displayed on the aircraft information display incorporates links between related information, is intuitively arranged on the aircraft information display, and dynamically updates responsive to changes in data and to user interaction.
Abstract:
Aircraft systems and methods for detecting non-compliant pilot action are provided. The method comprises analyzing an outbound communication from an aircraft to recognize a word or phrase corresponding to a parameter associated with a prior request for pilot action. If the word or phrase is recognized, the method further comprises storing data corresponding to the outbound communication in a data storage device. The stored data and pilot action taken are compared to determine if there is a discrepancy between the pilot action and the stored data. A discrepancy alert is outputted if the discrepancy is determined to exist. A predetermined time interval is timed from the outbound communication. A timeout alert is outputted at a timeout of the predetermined time interval unless the requested pilot action is taken within the predetermined time interval.
Abstract:
A flight display system for providing a visualization of an assumed lateral and vertical flight path on an avionic display for an aircraft performing energy management during an approach procedure, and methods for producing the same. The system improves upon available human-machine interfaces (HMI) by providing information not otherwise available; that being, a visualization of an assumed lateral and vertical flight path to assist the flight crew in making adjustments to the configuration of the aircraft when the aircraft is making an approach to an airport.
Abstract:
Methods and systems are provided for guiding or otherwise assisting a stabilized approach to a destination by presenting an energy state associated with an aircraft with respect to a target energy state for the stabilized approach. One method involves providing a graphical indication of a targeted energy state at a first position, a second graphical indication of a current energy state at a second position, and a third graphical indication of a configuration change at a third position. The distance with respect to a reference axis between the first position and the second position corresponds to a difference between a target parameter value associated with the targeted energy state and a current parameter value associated with the current energy state, and while a second distance between the first position and the third position with respect to the reference axis corresponds to an estimated amount of time before the configuration change.
Abstract:
A computer-implemented flight display system including a computer processor that is capable of determining a current energy situation of an aircraft, an electronic display device, and a graphical user interface (GUI) provided on the electronic display device. The GUI includes a current aircraft position symbol, an optimal aircraft position symbol, and at least one symbol indicating a position for changing aircraft configuration. Relative positioning on the GUI of the optimal aircraft position system and the at least one symbol indicating a position for changing aircraft configuration is based at least in part on the determined current energy situation of the aircraft.
Abstract:
A computer-implemented flight display system including a computer processor that is capable of determining a current energy situation of an aircraft, an electronic display device, and a graphical user interface (GUI) provided on the electronic display device. The GUI includes a current aircraft position symbol, an optimal aircraft position symbol, and at least one symbol indicating a position for changing aircraft configuration. Relative positioning on the GUI of the optimal aircraft position system and the at least one symbol indicating a position for changing aircraft configuration is based at least in part on the determined current energy situation of the aircraft.