Abstract:
Embodiments described herein provide for a method of launching atoms in an atom interferometer. The method includes determining a direction of the total effective acceleration force on the atoms, controlling a direction of launch of the atoms for measurement in the atom interferometer based on the direction of the total effective acceleration force, and obtaining measurements from the atoms.
Abstract:
An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop.
Abstract:
A method for measuring the population of atoms in a vapor cell comprises collecting a sample of atoms, applying radio frequency (RF) spectroscopy to the sample such that a first portion of the atoms are in an upper ground state and a second portion of the atoms are in a lower ground state, and applying light to the sample to produce a first fluorescence such that all atoms are left in the lower ground state. The method further comprises measuring a population of the atoms in the upper ground state based on the first fluorescence, applying an RF pulse to the sample to transfer the atoms in the lower ground state to the upper ground state, and applying light to the sample after the RF pulse is applied to produce a second fluorescence. A population of all the atoms in the sample is then measured based on the second fluorescence.
Abstract:
An apparatus for inertial sensing is provided. The apparatus comprises at least one atomic inertial sensor, and one or more micro-electrical-mechanical systems (MEMS) inertial sensors operatively coupled to the atomic inertial sensor. The atomic inertial sensor and the MEMS inertial sensors operatively communicate with each other in a closed feedback loop.
Abstract:
A method for measuring the population of atoms in a vapor cell comprises collecting a sample of atoms, applying radio frequency (RF) spectroscopy to the sample such that a first portion of the atoms are in an upper ground state and a second portion of the atoms are in a lower ground state, and applying light to the sample to produce a first fluorescence such that all atoms are left in the lower ground state. The method further comprises measuring a population of the atoms in the upper ground state based on the first fluorescence, applying an RF pulse to the sample to transfer the atoms in the lower ground state to the upper ground state, and applying light to the sample after the RF pulse is applied to produce a second fluorescence. A population of all the atoms in the sample is then measured based on the second fluorescence.
Abstract:
A method of operating a cold atom clock to maintain a highly homogeneous microwave field is provided. The method includes: driving a subset of microwave feed lines to excite a microwave field in a resonator, while a power and a phase of at least one microwave feed line in the subset is held constant, and while the power or the phase of at least one other microwave feed line in the subset is changed; measuring a strength of the atomic transition excited by the microwave field; extracting a relative power and a relative phase between or among the subset of microwave feed lines by processing the strength of the atomic transitions excited by the microwave field measured in at least one auxiliary-measurement sequence; and determining if an adjustment to one or more of the microwave feed lines is needed to improve the homogeneity of the microwave field phase and amplitude.
Abstract:
A radio-frequency atomic magnetometer comprises a laser, a photodetector, a vapor chamber, wherein the vapor chamber is in an optical path of laser light between the laser and photodetector, a circular polarizer configured to circularly polarize laser light emitted by the laser, wherein a circularly polarized laser beam is configured to pump into an oriented state, spins of atoms in the vapor chamber and to probe the atoms of the vapor chamber, wherein probing includes detecting a local radio frequency field; and a set of direct current (DC) field coils comprising at least one DC field coil, wherein the set of DC field coils is configured to generate a DC magnetic field oriented at 45 degrees relative to the optical axis of the laser light emitted by the laser and directed toward the vapor chamber; the set of DC field coils further configured to have adjustable DC magnetic field strength.
Abstract:
A method of operating a cold atom clock to maintain a highly homogeneous microwave field is provided. The method includes: driving a subset of microwave feed lines to excite a microwave field in a resonator, while a power and a phase of at least one microwave feed line in the subset is held constant, and while the power or the phase of at least one other microwave feed line in the subset is changed; measuring a strength of the atomic transition excited by the microwave field; extracting a relative power and a relative phase between or among the subset of microwave feed lines by processing the strength of the atomic transitions excited by the microwave field measured in at least one auxiliary-measurement sequence; and determining if an adjustment to one or more of the microwave feed lines is needed to improve the homogeneity of the microwave field phase and amplitude.
Abstract:
A laser gyroscope comprising includes a first solid waveguide; a gain medium interaction region where light traveling through the first solid waveguide interacts with non-solid Doppler-broadened gain medium molecules positioned outside of the first solid waveguide; at least one medium exciter configured to excite the non-solid Doppler-broadened gain medium at the gain medium interaction region, wherein the excited non-solid Doppler-broadened gain medium induces first and second laser fields within the first solid waveguide, wherein the first laser field travels in a clockwise direction within the first solid waveguide and the second laser field travels in a counter-clockwise direction within the first solid waveguide; and a photodetector communicatively coupled to the first solid waveguide and configured to detect the portions of the first and second laser fields.
Abstract:
Systems and methods for a cold atom frequency standard are provided herein. In certain embodiments, a cold atom microwave frequency standard includes a vacuum cell, the vacuum cell comprising a central cylinder, the central cylinder being hollow and having a first open end and a second open end; a first end portion joined to the first open end; and a second end portion joined to the second open end, wherein the first end portion, the central cylinder, and the second end portion enclose a hollow volume containing atoms, the first end portion and the second end portion configured to allow light to enter into the hollow volume. The cold atom microwave frequency standard also includes a cylindrically symmetric resonator encircling the central cylinder, wherein the resonator generates a microwave field in the hollow volume at the resonant frequency of the atoms.