Abstract:
Variable vane devices containing rotationally-driven translating vane structures are provided, as are methods for fabricating variable vane devices. In one embodiment, the variable vane device includes a flow assembly having a centerline, an annular flow passage extending through the flow assembly, cam mechanisms, and rotationally-driven translating vane structures coupled to the flow assembly and rotatable relative thereto. The translating vane structures include vane bodies positioned within the annular flow passage and angularly spaced about the centerline. During operation of the variable vane device, the cam mechanisms adjust translational positions of the vane bodies within the annular flow passage in conjunction with rotation of the translating vane structures relative to the flow assembly. By virtue of the translational movement of the translating vane structures, a reduction in the clearances between the vane bodies and neighboring flow assembly surfaces can be realized to reduce end gap leakage and boost device performance.
Abstract:
A field deployable, portable structured light measurement (SLM) apparatus, together with a structured light measurement process to manage part to part variation in production and in the field, to support both rotor airfoil mistuning and rotor airfoil repair limits.
Abstract:
A rotor blade comprises a mount and a blade that extends from the mount along a radial axis. The leading edge includes an indent segment. The leading edge has a leading edge radial length measured along the radial axis. The indent segment has an indent radial length measured along the radial axis. The indent segment has an indent depth. A first ratio of the indent radial length to the leading edge radial length is at most 0.5. A second ratio of the indent depth to the indent radial length is at least 0.05.
Abstract:
A field deployable, portable structured light measurement (SLM) apparatus, together with a structured light measurement process to manage part to part variation in production and in the field, to support both rotor airfoil mistuning and rotor airfoil repair limits.
Abstract:
A ram air turbine rotor comprises at least one intra-flow path shroud structure coupled between rotor blades, along a radial position between a support disc and an outer rim. The shroud structure includes shroud sectors each coupled between a respective pair of blades. The sectors each include a first edge adjacent to leading edges of the respective pair of blades, the first edge including a first curved segment, and a second edge adjacent to trailing edges of the respective pair of blades, the second edge including a second curved segment. The curved segments are each partially defined by a respective ellipse having a semi-major axis and a semi-minor axis. The semi-major axis is a portion of a spanwise distance between the respective pair of blades. The semi-minor axis is a portion of an axial distance between the leading edge of one blade and the trailing edge of an adjacent blade.
Abstract:
A ram air turbine rotor comprises at least one intra-flow path shroud structure coupled between rotor blades, along a radial position between a support disc and an outer rim. The shroud structure includes shroud sectors each coupled between a respective pair of blades. The sectors each include a first edge adjacent to leading edges of the respective pair of blades, the first edge including a first curved segment, and a second edge adjacent to trailing edges of the respective pair of blades, the second edge including a second curved segment. The curved segments are each partially defined by a respective ellipse having a semi-major axis and a semi-minor axis. The semi-major axis is a portion of a spanwise distance between the respective pair of blades. The semi-minor axis is a portion of an axial distance between the leading edge of one blade and the trailing edge of an adjacent blade.
Abstract:
Variable vane devices containing rotationally-driven translating vane structures are provided, as are methods for fabricating variable vane devices. In one embodiment, the variable vane device includes a flow assembly having a centerline, an annular flow passage extending through the flow assembly, cam mechanisms, and rotationally-driven translating vane structures coupled to the flow assembly and rotatable relative thereto. The translating vane structures include vane bodies positioned within the annular flow passage and angularly spaced about the centerline. During operation of the variable vane device, the cam mechanisms adjust translational positions of the vane bodies within the annular flow passage in conjunction with rotation of the translating vane structures relative to the flow assembly. By virtue of the translational movement of the translating vane structures, a reduction in the clearances between the vane bodies and neighboring flow assembly surfaces can be realized to reduce end gap leakage and boost device performance.
Abstract:
A rotor blade comprises a mount and a blade that extends from the mount along a radial axis. The leading edge includes an indent segment. The leading edge has a leading edge radial length measured along the radial axis. The indent segment has an indent radial length measured along the radial axis. The indent segment has an indent depth. A first ratio of the indent radial length to the leading edge radial length is at most 0.5. A second ratio of the indent depth to the indent radial length is at least 0.05.
Abstract:
Embodiments of a forward-swept impeller are provide, as are embodiments of a gas turbine engine containing a forward-swept impeller. In one embodiment, the gas turbine engine includes a shaft and a forward-swept impeller mounted to the shaft. The forward-swept impeller includes, in turn, an inboard impeller section, an outboard impeller section circumscribing the inboard impeller section, and a plurality of hub flow paths extending over the forward-swept impeller from the inboard impeller section to the outboard impeller section. The plurality of hub flow paths each have a flow path exit that is tilted in a forward direction, as taken along a line tangent to the flow path exit.
Abstract:
Variable stator vane assemblies and stator vanes thereof having a local swept leading edge are provided. The variable stator vane comprises an airfoil disposed between spaced apart inner and outer buttons centered about a rotational axis. The inner and outer buttons each have a button forward edge portion. The airfoil includes leading and trailing edges, pressure and suction sides, and a root and a tip. The leading edge includes a local forward sweep at the root, a local aft sweep at the tip, or both, thereby forming a locally swept leading edge thereat. The button forward edge portion of one or both of the inner and outer buttons is substantially coextensive with the locally swept leading edge. Methods are also provided for minimizing endwall leakage in the variable stator vane assembly using the same.