摘要:
A ram air turbine (RAT) mounting system includes a frame with a forward end having a first side, a second side disposed opposite the first side, a third side, and a fourth side disposed opposite the third side. The frame also includes an aft end. A first mounting element is connected to the forward end of the frame proximate the first side and the third side. A second mounting element is connected to the forward end of the frame proximate the first side and the fourth side. A first rod is connected to the forward end of the frame proximate the second side and the third side. A second rod is connected to the aft end of the frame.
摘要:
A fuel efficient aircraft propulsion system comprises a wingtip mounted ducted pusher fan with convergent backwash and a skewed conical engine nacelle. The system both mitigates wingtip vortex drag and converts a portion of vortex energy into propulsion force and lift force. The forward-tapering nacelle skews both downward and inward, so the lower nacelle surface is flush with the lower wing surface and the inboard nacelle surface does not alter flow over the upper wing surface. This firstly preserves lift at the outboard wing end. Secondly, air displacement by the nacelle accelerates flow only on the outboard and upper nacelle surfaces, and because the nacelle occupies the core of the nascent wingtip vortex, rotational air velocity is greatest on the upper nacelle surface. The resultant pressure drop on the upper nacelle surface contributes to aircraft lift. And because the nacelle surface tapers forward, this pressure drop does not exert backward-acting drag on the aircraft. Aft of the nacelle, the pusher fan hub surface conforms with the aft nacelle surface and tapers aft. Propulsion foils project from the forward portion of the pusher fan hub at an outward-aft angle, which directs convergent high pressure backwash flow along the aft tapering hub surface. This isolates aft-facing hub surfaces from drag-inducing vortex core pressure drop. Downstream fan backwash convergence then forms a central volume of high pressure flow where the low pressure trailing vortex core would otherwise develop. This is an efficient means to dissipate the cyclonic structure of the vortex, because vortex persistence requires low pressure core persistence. The direction of pusher fan rotation opposes the direction of wingtip vortex rotation as described in the prior art. This cross-flow interaction increases the effective power of the fan and also further counters vortex formation. An integral peripheral duct links the outer ends of the fan propulsion foils to provide thrust efficiency similar to that of a high bypass fanjet engine, but without the internal air friction within a bypass channel. In an alternative horizontal axis wind turbine embodiment, the same nacelle form supports secondary power-takeoff turbines mounted in high energy density flow at the turbine blade tips.
摘要:
A ram air turbine includes a turbine with one or more blades, a strut removably coupled to the turbine and having a gearbox section and a drive section, a cover located at an end of the gearbox section of the strut with a test plug having a static seal, a turbine shaft and a bevel gear located in the gearbox section of the strut and a driveshaft and a pinion gear located in the drive section of the strut, wherein the pinion gear engages with the bevel gear. The turbine shaft may include a dynamic seal that provides sealing between the turbine shaft and the cover. The test plug may be a threaded plug. The cover may also utilize a dynamic seal. The turbine shaft may include a splined internal cavity for use with a ground test motor.
摘要:
A combination hub, counterweight and crank arm for a governor assembly in a ram air turbine is has a hub section with a cylindrical orifice, an annular collar section that surround the hub section, a counterweight section that extends out of the annular collar section and a crank arm section that extends out of the annular collar section, with all the sections formed in a single piece steel body.
摘要:
A ram air turbine comprises a turbine housing which mounts a number of circumferentially spaced turbine blades that function predominantly as impulse turbine blades and a number of splitters, each located in between adjacent turbine blades, which function predominantly as a reaction turbine blade but are shorter in length than the turbine blades. The cross section of the turbine housing decreases between its forward and aft ends while the height of both the turbine blades and splitters increases in the same direction such that the tips of the turbine blades and splitters collectively form a substantially cylindrical shape.
摘要:
A method of balancing a ram air turbine that has a turbine shaft with a turbine shaft axis, a rotor attached to the shaft, rotor blades attached to the rotor that move between a fine pitch and coarse pitch position, a spring-loaded governor for controlling the position of the blades that has its springing retained by a stationary outer spring seat and a movable inner yoke plate that slides on the turbine shaft and whose position determines blade pitch, comprises the steps of: pulling the yoke plate toward the spring seat to displace the yoke plate toward the spring seat sufficiently to cause the rotor blades to assume a desired degree of pitch; spinning the turbine shaft at a desired rotational speed; balancing the rotor to minimize vibration of the rotor with the desired rotor blade pitch and turbine shaft speed; and releasing the pull of the yoke plate toward the spring seat.
摘要:
An improved ram air turbine for generating emergency aeronautical supplemental power with a plurality of concentric or nested linear bearings for supporting a speed governor yoke plate on a speed governor shaft comprising a movable sleeve that supports the yoke plate and rides on the governor shaft.
摘要:
A ram air turbine system provides liquid cooling of its generator by employing a closed loop liquid cooling line originating from a pump in the gearbox of the system. In the preferred embodiment the pump may be a pitot pump to which gearbox lubricating oil may be channeled along a trough that is located in the gearbox. At least a portion of the trough is immersed in the oil which travels along the trough toward the pump in response to turbine shaft rotation. The oil is directed into a cooling jacket which is integral to the generator and then to a heat exchanger exposed to airflow. The oil is then returned to the gearbox.
摘要:
A ram air turbine generator comprises a cylindrical external fairing having bypass exhaust orifices adjacent the leading end and external exhaust ports adjacent the aft end. A central flow guide is coaxially mounted and has a contoured outer surface spaced from the external fairing. A valve tube is coaxial with, and intermediate, the external fairing and the central flow guide and extends between a nose end with openings nearest the leading end of the external fairing and an aft plate. The valve tube also has a plurality of aft internal exhaust ports generally coextensive with the aft external exhaust ports in the external fairing. The valve tube is spring biased to a first position at which its nose end is proximate the leading end of the fairing and blocks the bypass exhaust orifices such that air is caused to flow through an annular nozzle defined between the valve tube and the central flow guide, through a turbine wheel, then out to the surrounding region through the aft internal and external exhaust ports. Ram air is effective to move the valve tube to a second position so as to expose the bypass exhaust orifices enabling substantial flow of bleed air therethrough. Additionally, a nozzle flow control mechanism is operable in response to movement of the valve tube between the first and second positions.
摘要:
A drive system is provided between a ram air turbine (10) and at least a pair of accessory power units (38,40) of an aircraft, the ram air turbine being movable between stowed and deployed positions relative to the fuselage of the aircraft. The problems of providing a compact lightweight design which eliminates extraneous components in the airstream and a system which operates at optimum speeds are solved by the use of a drive shaft (28) extending between the ram air turbine and a first accessory power unit (38), such as a hydraulic pump, within the aircraft fuselage. First gears (30, 34) rotatably couple an outer end of the main drive shaft to the ram air turbine. Second gears (36,48) rotatably couple an inner end of the main drive shaft to the first accessory power unit. Third gears, in the form of a gear train (54), rotatably couple the first accessory power unit to a second accessory power unit (40), such as an electrical generator, within the aircraft fuselage. The pair of accessory power units have generally parallel drive shafts (44,52) rotatably coupled by the gear train.