Abstract:
A fuel cell vehicle of the disclosure includes a cell stack including a plurality of unit cells stacked on one another, a boost converter configured to boost the output from the cell stack and to output the boosted output as main power, a supercapacitor configured to be charged with the power generated in the cell stack to generate auxiliary power, and a load terminal connected to the boost converter instead of the cell stack to receive the main power and connected to the supercapacitor to receive the auxiliary power so as to be driven.
Abstract:
A fuel cell system power supply includes: a fuel cell stack configured to react hydrogen and oxygen in air with each other in order to generate electricity; a high-voltage converter configured to boost output power of the fuel cell stack; and a high-voltage junction unit configured to transmit the output power of the fuel cell stack to the high-voltage converter and to receive high-voltage power from the high-voltage converter. The high-voltage junction unit has a structure configured to simultaneously accommodate an output terminal of the fuel cell stack and an input terminal of the high-voltage converter. Consequently, the assembly structure of the high-voltage junction unit may be simplified, whereby productivity may be improved. In addition, maintainability may be improved, whereby it is possible to efficiently maintain a fuel cell vehicle.
Abstract:
A water electrolysis system includes a water electrolytic stack, a water reservoir connected to the water electrolytic stack to supply water to the water electrolytic stack, a water circulation pump supplying the water in the water reservoir to the electrolytic stack; and a control unit configured to, during an operation stoppage of the electrolysis system, control the driving of the water circulation pump to convert the water in the electrolytic stack from an acidic condition to a neutral condition and to regulate a unit cell voltage of the electrolytic stack to a voltage such that an electrolysis reaction does not occur and a chemical state of an anode catalyst is stably maintained.
Abstract:
A device for detecting a current leakage and a current leakage detection system including the same are provided. The device for detecting a current leakage includes a magnetic core having an internal space and both ends the core are separated from each other. An electric wiring extends to pass through the internal space of the magnetic core, and is connected between a power source and an electric load to supply power from the power source to the electric load. A hall sensor senses a magnetic field induced in the magnetic core.
Abstract:
A fuel cell includes end cell heaters each disposed on outer sides of end cells disposed at both ends of the fuel cell stack. The end cell heaters each include a support formed in a plate shape having fuel channels and air channels. A heat generating part is formed in the support. Electricity conduction blocks are coupled to the support.
Abstract:
An apparatus and a method for discharging a residual electric energy of a fuel cell can rapidly discharge and remove a residual electric energy of a fuel cell for safety after the fuel cell is operated or when a collision is detected. The apparatus for discharging the residual electric energy of the fuel cell includes: a discharge relay connected with a fuel cell and turned on when starting or stopping a vehicle or a collision detecting sensor detects a collision; and a non-linear protecting element connected with the discharge relay in order to discharge a residual electric energy from the fuel cell.
Abstract:
An apparatus for insulating a plurality of exposed live parts of a fuel cell stack, includes a plurality of protectors. Each of the plurality of protectors is made of an insulating material and configured to insulate a corresponding one of the plurality of exposed live parts to which a corresponding one of current collector terminals disposed in an end plate of the fuel cell stack and a corresponding one of connections of a busbar are connected.
Abstract:
A vehicle having a fuel cell includes a cell stack including a plurality of unit cells stacked on one another, a direct current/direct current (DC/DC) converter configured to convert the level of stack voltage output from the cell stack and including a discharger to remove residual energy thereof, a power distributor configured to distribute the level-converted voltage output from the DC/DC converter or to provide voltage remaining in the cell stack to the discharger to discharge the voltage in response to first control signals, and a controller configured to generate the first control signals depending on whether the vehicle is traveling normally.
Abstract:
A device for detecting a current leakage and a current leakage detection system including the same are provided. The device for detecting a current leakage includes a magnetic core having an internal space and both ends the core are separated from each other. An electric wiring extends to pass through the internal space of the magnetic core, and is connected between a power source and an electric load to supply power from the power source to the electric load. A hall sensor senses a magnetic field induced in the magnetic core.
Abstract:
Provided is an end cell heater for a fuel cell capable of preventing water existing in reaction cells of a fuel cell stack from being frozen to improve initial start ability and initial driving performance of the fuel cell at the time of cold-starting the fuel cell during winter by disposing heaters on end cells disposed at both ends of the fuel cell stack and capable of securing air-tightness and pressure resistance properties of air passages and fuel passages formed in the end cell.