摘要:
An engine control system includes a driver module and a diagnostics module. The driver module includes a high-side driver and a low-side driver, which selectively actuate a load. The driver module generates status signals based on detection of each of a plurality of failure modes of the high-side and low-side drivers. The diagnostics module increments a first error count for a first mode of the plurality of failure modes when the status signals indicate the driver module has detected the first mode. The diagnostics module increments a corresponding total count each time the driver module analyzes the first mode. The diagnostics module sets a fail state for a diagnostic trouble code (DTC) when the first error count for the first mode reaches a first predetermined threshold prior to the total count reaching a second predetermined threshold.
摘要:
An engine control system includes a digital signal processing (DSP) module that generates a fast Fourier transform (FFT) of an engine knock signal generated by an engine knock sensor. An intensity determination module determines an engine knock intensity based on one of a maximum of and an average of the FFT. A status determination module determines a status of the engine knock sensor based on the engine knock intensity, a plurality of predetermined knock intensity thresholds, and a rotational speed of an engine crankshaft.
摘要:
A knock diagnostic module having a knock module that increments a sample count when a cylinder firing signal corresponding to a first cylinder is received and selectively increments a knock count based on a knock detection signal that corresponds to the cylinder firing signal of the first cylinder A knock analysis module analyzes the knock count of the first cylinder when the sample count of the first cylinder reaches a predetermined value and selectively generates an excessive knock signal when the knock count exceeds a predetermined threshold. A remedial action module selectively performs a remedial action based on the excessive knock signal.
摘要:
A knock detection module for an engine comprises a statistics storage module and a processing module. The statistics storage module stores M times N vibration profiles corresponding to M zones of operation of the engine and N cylinders of the engine, wherein M and N are integers greater than one. The processing module determines in which one of the M zones the engine is operating and determines whether knock has occurred for one of the N cylinders by comparing measured vibration data with a selected one of the vibration profiles corresponding to the one of the M zones and the one of the N cylinders.