Abstract:
According to an example, apparatuses for performing multiple concurrent spectral analyzes on a sample under test include an optical system to concurrently direct a plurality of light beams onto analytes at multiple locations on the sample under test, in which the plurality of light beams cause light in either or both of a Raman spectra and a non-Raman spectra to be emitted from the analytes at the multiple locations of the sample under test. The apparatuses also include a detector to concurrently acquire a plurality of spectral measurements of the light emitted from the analytes at the multiple locations of the sample under test. Example methods of performing spectral analysis include use of the apparatuses.
Abstract:
According to an example, apparatuses for performing multiple concurrent spectral analyses on a sample under test include an optical system to concurrently direct a plurality of light beams onto analytes at multiple locations on the sample under test, in which the plurality of light beams cause light in either or both of a Raman spectra and a non-Raman spectra to be emitted from the analytes at the multiple locations of the sample under test. The apparatuses also include a detector to concurrently acquire a plurality of spectral measurements of the light emitted from the analytes at the multiple locations of the sample under test. Example methods of performing spectral analysis include use of the apparatuses.
Abstract:
The present disclosure is drawn to traveling wave dielectrophoresis sensing devices and associated methods. In an example, a traveling wave dielectrophoresis sensing device can comprise an array of electromagnetic field enhancing nanostructures attached to the substrate, the electromagnetic field enhancing nanostructures including a metal; a plurality of conductive element electrically associated with the electromagnetic field enhancing nanostructures; and a controller for applying alternating and out of phase potential to the plurality of conductive elements to form traveling wave dielectrophoretic forces within the array.
Abstract:
According to an example, methods for forming three-dimensional (3-D) nano-particle assemblies include depositing SES elements onto respective tips of nano-fingers, in which the nano-fingers are arranged in sufficiently close proximities to each other to enable the tips of groups of adjacent ones of the nano-fingers to come into sufficiently close proximities to each other to enable the SES elements on the tips to be bonded together when the nano-fingers are partially collapsed. The methods also include causing the nano-fingers to partially collapse toward adjacent ones of the nano-fingers to cause a plurality of SES elements on respective groups of the nano-fingers to be in relatively close proximities to each other and form respective clusters of SES elements, introducing additional particles that are to attach onto the clusters of SES elements, and causing the clusters of SES elements to detach from the nano-fingers.
Abstract:
The present disclosure is drawn to chemical sensing devices and associated methods. In one example, a chemical sensing device can include a substrate; an elongated nanostructure having an attachment end and a free end opposite the attachment end, the attachment end affixed to the substrate and the free end including a metal; and a metal oxide coating applied to the elongated nanostructure. In one example, a functional group can be attached to the coating via a covalent bond.
Abstract:
According to an example, methods for forming three-dimensional (3-D) nano-particle assemblies include depositing SES elements onto respective tips of nano-fingers, in which the nano-fingers are arranged in sufficiently close proximities to each other to enable the tips of groups of adjacent ones of the nano-fingers to come into sufficiently close proximities to each other to enable the SES elements on the tips to be bonded together when the nano-fingers are partially collapsed. The methods also include causing the nano-fingers to partially collapse toward adjacent ones of the nano-fingers to cause a plurality of SES elements on respective groups of the nano-fingers to be in relatively close proximities to each other and form respective clusters of SES elements, introducing additional particles that are to attach onto the clusters of SES elements, and causing the clusters of SES elements to detach from the nano-fingers.
Abstract:
According to an example, methods for forming three-dimensional (3-D) nano-particle assemblies include depositing SES elements onto respective tips of nano-fingers, in which the nano-fingers are arranged in sufficiently close proximities to each other to enable the tips of groups of adjacent ones of the nano-fingers to come into sufficiently close proximities to each other to enable the SES elements on the tips to be bonded together when the nano-fingers are partially collapsed. The methods also include causing the nano-fingers to partially collapse toward adjacent ones of the nano-fingers to cause a plurality of SES elements on respective groups of the nano-fingers to be in relatively close proximities to each other and form respective clusters of SES elements, introducing additional particles that are to attach onto the clusters of SES elements, and causing the clusters of SES elements to detach from the nano-fingers.
Abstract:
An electrically driven device for surface enhanced Raman spectroscopy includes a substrate, a Raman signal-amplifying structure positioned on the substrate, and an analyte receptor attached to a structure chosen from i) the Raman signal-amplifying structure, or ii) the substrate near the Raman signal-amplifying structure, or iii) combinations of i and ii. The analyte receptor has a selective binding affinity for an analyte. Conductive elements are positioned relative to one another and to the analyte receptor such that the conductive elements together produce an electric field in the vicinity of the analyte receptor when a voltage bias is applied between the conductive elements.