摘要:
A substrate treatment apparatus of the present invention includes: a holding means for rotatably holding a substrate to be treated; a coating solution supply nozzle for supplying a coating solution onto the front surface of the substrate to be treated held on the holding means; a treatment container with an upper surface open for housing them; an exhaust means for exhausting an atmosphere in the treatment container from the bottom; a multiblade centrifugal fan provided on the inner periphery of the treatment container for flowing airflow on a front surface side of the substrate to the exhaust means; and a controller for controlling the number of rotations of the multiblade centrifugal fan corresponding to the number of rotations of the substrate, wherein the number of rotations of the multiblade centrifugal fan is controlled so that turbulent airflow flowing in a circumferential direction on the front surface of the substrate generated due to the rotation of the substrate is corrected to laminar airflow flowing in a radial direction.
摘要:
A disclosed heating apparatus includes a heating chamber configured to heat a substrate placed in the heating chamber with a heat plate opposing the substrate; a gas stream forming portion that creates a gas stream along a top surface of the substrate in the heating chamber; and a pair of first plate members respectively located between an inner side wall of the heating chamber and a first substrate edge opposing the inner side wall, and between another inner side wall of the heating chamber and a second substrate edge opposing the other inner side wall.
摘要:
An organic polymer film can be completely decomposed and removed from a substrate surface by exposing the film to ultraviolet radiation having a wavelength of 180 nm or less. Also, ultraviolet radiation not longer than 180 nm in wavelength is scarcely transmitted through a transparent conductive oxide such as ITO and, thus, can be used for eliminating a defective polyimide alignment film formed on a color filter substrate and an array substrate having a transparent electrode pattern of ITO formed on the surface of a pigment portion and a TFT structure, respectively. According to the present invention, the defective alignment film on the substrates can be removed completely without any damage such as discoloring of the pigment portion and/or changing the TFT characteristics.
摘要:
An organic polymer film can be completely decomposed and removed from a substrate surface by exposing the film to ultraviolet radiation having a wavelength of 180 nm or less. Also, ultraviolet radiation not longer than 180 nm in wavelength is scarcely transmitted through a transparent conductive oxide such as ITO and, thus, can be used for eliminating a defective polyimide alignment film formed on a color filter substrate and an array substrate having a transparent electrode pattern of ITO formed on the surface of a pigment portion and a TFT structure, respectively. According to the present invention, the defective alignment film on the substrates can be removed completely without any damage such as discoloring of the pigment portion and/or changing the TFT characteristics.
摘要:
According to the invention, a cleaning method and a cleaning apparatus are disclosed for removing organic contaminants on a surface of a color filter without damaging pigment portions of the color filter. The cleaning is performed by using a source of ultraviolet radiation having a wavelength equal to or less than 180 nm (most preferably a wavelength of 172 nm), which does not transmit through the transparent electrodes (e.g., ITO film, IZO film or the like), thereby protecting the pigment portions of the color filter. As a result, the glass substrate can be cleaned by the ultraviolet radiation without discoloring the pigment portions of the color filter and the cleaning effect is increased because the exposure time to the ultraviolet radiation is not limited.
摘要:
Disclosed are an improved semiconductor memory cell suitable for high integration and a novel method of fabricating the same. The memory cell has a large capacitance and a small area. The memory cell also has a plurality of bit-lines buried in an isolation region in a semiconductor substrate. The bit-line has a very small width and thickness thereby reducing a parasitic capacity between the bit-line and the semiconductor substrate. The memory cell may further be provided with a noise shielding line. Further, disclosed is a novel memory cell array of a semiconductor memory. The buried bit-line is coupled with a bit-line connecting sub-arrays and both are separated by a insulation film. A plurality of pairs of the bit-lines are arranged in rows. A word-line is coupled with a sub-word line and both are separated by a insulation film. A plurality of pairs of the word-lines are arranged in columns. The memory cells are arranged at the intersections of the buried bit-lines and the word-lines. The memory cells are also alternatively arranged on the adjacent buried bit-lines so that the number of the memory cells arranged on one of the buried bit-lines are reduced.
摘要:
Disclosed is a supercritical processing apparatus which can suppress the occurrence of pattern collapse, improve the throughput, and prolong a maintenance interval. In the disclosed supercritical processing apparatus to remove a liquid remained on a substrate by a super-critical state processing fluid, a heating unit heats the processing fluid to place the processing fluid into a processing receptacle in a supercritical state, and a cooling mechanism forcibly cools an area capable of transferring the heat to the substrate from the heating unit in order to suppress the liquid from being evaporated from the substrate until the substrate is disposed on a seating unit.
摘要:
Provided are a substrate processing apparatus and a substrate processing method capable of processing of a substrate using a supercritical fluid without exposing the pattern formed on the substrate to an atmospheric environment. The substrate processing apparatus includes a cleaning bath configured to accommodate a substrate and clean the substrate by flowing a cleaning solution, and a processing vessel configured to accommodate the cleaning bath and process the substrate with a supercritical fluid.
摘要:
A heating device 1 includes a flat heating chamber 3 provided with a side opening. A substrate W is carried in a horizontal position through the side opening into the processing chamber 3, and is subjected to a heating process in the heating chamber 3. the heating chamber 3 is provided with heating plates 34 and 35 respectively provided with heating elements 34a and 35a, and a cooling mechanism 2 for cooling the heating plates 34 and 35. A controller 7 controls the cooling mechanism such that the heating plates 34 and 35 are cooled after the completion of the heating process for heating the substrate W and before a succeeding substrate W is carried into the heating chamber 3, and controls the heating elements 34a and 35a such that the heating plates 34 and 35 are heated at a processing temperature after the succeeding substrate has been carried into the heating chamber 3.
摘要:
Disclosed are an improved semiconductor memory cell suitable for high integration and a novel method of fabricating the same. The memory cell has a large capacitance and a small area. The memory cell also has a plurality of bit-lines buried in an isolation region in a semiconductor substrate. The bit-line has a very small width and thickness thereby reducing a parasitic capacity between the bit-line and the semiconductor substrate. The memory cell may further be provided with a noise shielding line. Further, disclosed is a novel memory cell array of a semiconductor memory. The buried bit-line is coupled with a bit-line connecting sub-arrays and both are separated by a insulation film. A plurality of pairs of the bit-lines are arranged in rows. A word-line is coupled with a sub-word line and both are separated by a insulation film. A plurality of pairs of the word-lines are arranged in columns. The memory cells are arranged at the intersections of the buried bit-lines and the word-lines. The memory cells are also alternatively arranged on the adjacent buried bit-lines so that the number of the memory cells arranged on one of the buried bit-lines are reduced.