Abstract:
An apparatus and method for inspecting the quality of a weld under test in a structure having a plurality of spaced apart welds. Two probes are placed on opposite sides of the structure so that a current path is formed through the weld under test. The probes are energized with alternating current at a known frequency. The magnetic flux generated from the current flow through the probes and at least one of the spaced apart welds is then measured and subsequently compared with magnetic flux data previously determined and representing weld quality.
Abstract:
A high-voltage noise filter of a power conversion device includes: a metal housing; an anode bus bar connecting anodes of a power source and a power module; a cathode bus bar connecting cathodes thereof; a first magnetic core having a through hole where the anode bus bar and the cathode bus bar pass through; an X capacitor having one end connected to the anode bus bar, and the other end connected to the cathode bus bar; a first Y capacitor having one end connected to the anode bus bar, and the other end grounded; a second Y capacitor having one end connected to the cathode bus bar, and the other end grounded; and a first cooling unit connected to the first magnetic core and the metal housing. The anode bus bar partly faces the first cooling unit, and the cathode bus bar partly faces the first cooling unit.
Abstract:
Provided is an electromagnetic noise analyzing apparatus, a controlling apparatus, and a controlling method in each of which the continuous change of the running state of a vehicle or a railway vehicle is considered. The controlling apparatus includes: a vehicle running control section which outputs, on the basis of operation information of a vehicle, a vehicle driving parameter as a driving state of the vehicle; a signal converting section which converts the vehicle driving parameter into a noise parameter as an electric parameter; and an electromagnetic noise analyzing section which calculates, on the basis of the noise parameter, the amount of electromagnetic noise propagating in the vehicle.
Abstract:
A system and method for identifying an electrical noise propagation path through an object, such as an automotive vehicle, from a source of periodic electrical noise. An electrical noise sensor is positioned at a selected area on the object which generates an output signal representative of the magnitude of the electrical noise. A trigger generator generates a trigger signal in synchronism with a source of periodic electrical noise and that trigger signal is connected as an input signal to measurement equipment connected to the sensor to initiate electrical noise reading by the sensor. A recorder then records the output from the sensor. The electrical noise sensor is moved to different areas on the object to determine the electrical noise propagation path.
Abstract:
An object of the present invention is to provide an EMC design technique of a device including an electronic device mounted therein for implementing noise amount analysis of a system in which individual electronic devices are combined. A housing model is acquired, component models are selected and acquire, the acquired component models are connected using a wire, the acquired component models are arranged in the acquired housing model, the arranged component models connected using the wire is driven to generate electromagnetic noise from the component models and the wire, the generated electromagnetic noise is propagated in the housing model to calculate a noise amount, and an output process of outputting data of the calculated noise amount is performed. Thus, even in the system in which a plurality of electronic devices are combined, electromagnetic noise analysis of the system can be easily performed, and a noise reduction design can be supported.