Abstract:
The present disclosure generally relates to a signal transmission path evaluation device and method for evaluating EMC resistance of a signal transmission path using a computer system. An operating device of the computer system is input with signal transmission line shape data, signal transmission line path data, signal transmission line shape dispersion data, and margin information for noise input of a communication device connected to the signal transmission line. Calculations are performed including an electric field or a magnetic field in a vicinity of the signal transmission line path from the signal transmission line path data, dispersion of the signal line transmission line shape via a random number, noise waveform at a communication device input from the electric field or the magnetic field in the vicinity of the signal transmission path, error occurrence determination, and error rate from plural time trial results. Information concerning the calculated error rate is output.
Abstract:
An object of the present invention is to provide an EMC design technique of a device including an electronic device mounted therein for implementing noise amount analysis of a system in which individual electronic devices are combined. A housing model is acquired, component models are selected and acquire, the acquired component models are connected using a wire, the acquired component models are arranged in the acquired housing model, the arranged component models connected using the wire is driven to generate electromagnetic noise from the component models and the wire, the generated electromagnetic noise is propagated in the housing model to calculate a noise amount, and an output process of outputting data of the calculated noise amount is performed. Thus, even in the system in which a plurality of electronic devices are combined, electromagnetic noise analysis of the system can be easily performed, and a noise reduction design can be supported.
Abstract:
An apparatus and method for inspecting the quality of a weld under test in a structure having a plurality of spaced apart welds. Two probes are placed on opposite sides of the structure so that a current path is formed through the weld under test. The probes are energized with alternating current at a known frequency. The magnetic flux generated from the current flow through the probes and at least one of the spaced apart welds is then measured and subsequently compared with magnetic flux data previously determined and representing weld quality.
Abstract:
To improve the performance of the voltage filter. Rather than reducing an area of a region surrounded by a closed loop formed in a voltage filter 12A, an induced electromotive force generated in the voltage filter 12A itself is reduced by forming a pair of a closed loop CA and a closed loop CB in which the directions of the generated induced electromotive forces are opposite to each other by making a wiring 100 (anode wiring) intersect a wiring 200 (cathode wiring).
Abstract:
The present disclosure generally relates to a signal transmission path evaluation device and method for evaluating EMC resistance of a signal transmission path using a computer system. An operating device of the computer system is input with signal transmission line shape data, signal transmission line path data, signal transmission line shape dispersion data, and margin information for noise input of a communication device connected to the signal transmission line. Calculations are performed including an electric field or a magnetic field in a vicinity of the signal transmission line path from the signal transmission line path data, dispersion of the signal line transmission line shape via a random number, noise waveform at a communication device input from the electric field or the magnetic field in the vicinity of the signal transmission path, error occurrence determination, and error rate from plural time trial results. Information concerning the calculated error rate is output.
Abstract:
A common mode noise filter adapted for connection in series between a noise source and a load having a first and second inductor connected in series respectively between the noise source and the load. A capacitor which exhibits stray inductance is connected in series with a third inductor having its other end connected to a junction of the first and second inductors. The first, second, and third inductors are selected and positioned relative to each other so that an absolute value of the third inductor and mutual inductance of the first, second, and third inductors minus the stray inductance of the capacitor is minimized.
Abstract:
A system and method for identifying an electrical noise propagation path through an object, such as an automotive vehicle, from a source of periodic electrical noise. An electrical noise sensor is positioned at a selected area on the object which generates an output signal representative of the magnitude of the electrical noise. A trigger generator generates a trigger signal in synchronism with a source of periodic electrical noise and that trigger signal is connected as an input signal to measurement equipment connected to the sensor to initiate electrical noise reading by the sensor. A recorder then records the output from the sensor. The electrical noise sensor is moved to different areas on the object to determine the electrical noise propagation path.
Abstract:
A power conversion apparatus is provided with a bus bar connecting a cable connected to an external power supply or load and an internal circuit. To provide this power conversion apparatus with a wiring structure for noise propagation suppression without use of a filter circuit element that causes increase in the volume of the apparatus, the bus bar is provided with an electromagnetic band gap structure. Electromagnetic noise is thereby suppressed from propagating from the power conversion apparatus to the power supply or the load via the cable.
Abstract:
The object is to provide a power converter which is capable of minimizing an extent to which the power converter components other than the semiconductor module are thermally affected by the heat originating from the semiconductor module. The semiconductor modules constituting a main circuit for power conversion; a capacitor electrically connected to the main circuit; drive circuits that provide the main circuit with a drive signal used in power conversion operation; a control circuit that provides the drive circuit with a control signal used to prompt the drive circuit to provide the drive signal. Within a casing, a cooling chamber including a coolant passage is formed, and a chamber wall of the cooling chamber is formed with a thermally conductive material. At least the semiconductor modules are housed inside the cooling chamber, and at least the capacitor and the control circuit are disposed outside the cooling chamber.
Abstract:
Provided is a power conversion device capable of selectively suppressing harmonic noise in a frequency band and a machine equipped with the power conversion device. The power conversion device includes a switching element (13), a switching signal generation unit (23, 24) for generating a switching control signal for controlling the turning on/off of the switching element (13), and a control unit (18), and is characterized in that the switching control signal generation unit (23, 24) generates the switching control signal including a combination of a pair of symmetrical pulse waveforms having on and off periods that are interchanged with respect to a repeated cycle.