Abstract:
Dual-energy absorptiometry is used to estimate visceral fat metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing visceral fat and subcutaneous fat, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the visceral fat in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large “abdominal” region and a smaller “abdominal cavity” region. Two boundaries of the “abdominal cavity” region are placed at positions associated with the left and right innermost extent of the abdominal muscle wall by identifying inflection of % Fat values. The regions are combined in an equation that is highly correlated with VAT measured by quantitative computed tomography in order to estimate VAT.
Abstract:
A system for detecting lymphedema comprising a dual energy x-ray absorptiometry system and one or more spacer pads disposed with a field of view of the dual energy x-ray absorptiometry system. The dual energy x-ray absorptiometry system comprising an x-ray source and a patient support platform, wherein the patient support platform is configured to receive a patient in a supine position with the x-ray source disposed above the patient support platform. The one or more spacer pads configured to be positioned body parts of the patient.
Abstract:
A system for detecting lymphedema comprising a dual energy x-ray absorptiometry system and one or more spacer pads disposed within a field of view of the dual energy x-ray absorptiometry system. The dual energy x-ray absorptiometry system comprising an x-ray source and a patient support platform, wherein the patient support platform is configured to receive a patient in a supine position with the x-ray source disposed above the patient support platform. The one or more spacer pads configured to be positioned between body parts of the patient.
Abstract:
A method of generating a visual representation of a complex medical diagnosis includes receiving a first signal corresponding to a measurement of a patient biological condition. A second signal corresponding to a measurement of a patient performance condition is also received. The first and second signals are processed and a visual representation of a diagnostic assessment is generated. The diagnostic assessment is based at least in part on the patient biological condition and the patient performance condition. The visual representation is marked with the measurement of the patient biological condition and the measurement of the patient performance condition.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
A system for detecting lymphedema comprising a dual energy x-ray absorptiometry system and one or more spacer pads disposed within a field of view of the dual energy x-ray absorptiometry system. The dual energy x-ray absorptiometry system comprises an x-ray source and a patient support platform, wherein the patient support platform is configured to receive a patient in a supine position with the x-ray source disposed above the patient support platform. The one or more spacer pads are configured to be positioned between body parts of the patient.