Abstract:
Dual-energy absorptiometry is used to estimate visceral fat metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing visceral fat and subcutaneous fat, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the visceral fat in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large “abdominal” region and a smaller “abdominal cavity” region. Two boundaries of the “abdominal cavity” region are placed at positions associated with the left and right innermost extent of the abdominal muscle wall by identifying inflection of % Fat values. The regions are combined in an equation that is highly correlated with VAT measured by quantitative computed tomography in order to estimate VAT.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
Dual-energy absorptiometry is used to estimate visceral fat metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing visceral fat and subcutaneous fat, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the visceral fat in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large “abdominal” region and a smaller “abdominal cavity” region. Two boundaries of the “abdominal cavity” region are placed at positions associated with the left and right innermost extent of the abdominal muscle wall by identifying inflection of % Fat values. The regions are combined in an equation that is highly correlated with VAT measured by quantitative computed tomography in order to estimate VAT.
Abstract:
A method of generating a visual representation of a complex medical diagnosis includes receiving a first signal corresponding to a measurement of a patient biological condition. A second signal corresponding to a measurement of a patient performance condition is also received. The first and second signals are processed and a visual representation of a diagnostic assessment is generated. The diagnostic assessment is based at least in part on the patient biological condition and the patient performance condition. The visual representation is marked with the measurement of the patient biological condition and the measurement of the patient performance condition.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
Systems and methods for determining body composition by combining dual-energy x-ray (DXA) technology with three-dimensional (3D) optical technology and/or bioimpedance technology. A multi-modality scanning system may include a dual-energy x-ray source and an x-ray detector mounted to opposing sides a c-arm and configured to scan a patient on a optically translucent table. The system may also include one or more 3D optical imaging devices to capture 3D optical images of the patient substantially concurrently with the emission of the dual energy x-rays. A bioimpedance machine may also be included in the multi-modality scanning system. Data based on the dual-energy x-rays may be combined with the data from the 3D optical images and/or the bioimpedance data to generate values of at least three compartments selected from: bone, fat tissue, lean tissue, dehydrated lean tissue, and water.
Abstract:
Dual-energy absorptiometry is used to estimate intramuscular adipose tissue metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing intramuscular adipose tissue as well as subcutaneous adipose tissue, at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the intramuscular adipose tissue in the slice, and using the resulting estimates. Processing the measurements includes an algorithm which places boundaries of regions, e.g., a large region and a smaller region. The regions are combined in an equation that is highly correlated with intramuscular adipose tissue measured by quantitative computed tomography in order to estimate intramuscular adipose tissue.
Abstract:
A system and a method of using dual-energy absoptiometry to estimate visceral fat metrics and display results, preferably as related to normative data. The process involves deriving x-ray measurements for respective pixel positions related to a two-dimensional projection image of a body slice containing visceral fat as well as subcutaneous fat; at least some of the measurements being dual-energy x-ray measurements, processing the measurements to derive estimates of metrics related to the visceral fat in the slice; and using the resulting estimates.
Abstract:
A method of generating a visual representation of a complex medical diagnosis includes receiving a first signal corresponding to a measurement of a patient biological condition. A second signal corresponding to a measurement of a patient performance condition is also received. The first and second signals are processed and a visual representation of a diagnostic assessment is generated. The diagnostic assessment is based at least in part on the patient biological condition and the patient performance condition. The visual representation is marked with the measurement of the patient biological condition and the measurement of the patient performance condition.