Abstract:
An operational amplifier includes a first amplifying unit, a second amplifying unit, a current source, a first compensation capacitor, and a second compensation capacitor. The first amplifying unit includes a first input transistor, a second input transistor, a third input transistor, and a fourth input transistor. The second amplifying unit includes a fifth input transistor, a sixth input transistor, a seventh input transistor, and an eighth input transistor. One end of the first compensation capacitor is coupled to a drain of the seventh input transistor, and the other end of the first compensation capacitor is coupled to a gate of the eighth input transistor. One end of the second compensation capacitor is coupled to a drain of the eighth input transistor, and the other end of the second compensation capacitor is coupled to a gate of the seventh input transistor.
Abstract:
A method, equipment, and operation management system for detecting and authenticating a terminal in a passive optical network are provided. The method includes the following steps. The terminal has a logic registration code. A central office end receives the logic registration code sent by the terminal. The central office end judges whether the logic registration code of the terminal matches with the logic registration code stored at the central office end, and determines that the terminal is a valid terminal if the logic registration code sent by the terminal matches with the logic registration code stored at the central office end. The central office end records a terminal serial number from the valid terminal, and records a terminal identifier assigned to the valid terminal. By using the provided method, equipment, and operation management system, it is unnecessary to statically configure the terminal SN at the central office end, such that the maintenance cost of the central office end and the terminal is lowered, the flexibility of terminal detection and authentication is improved, and the maintainability of the central office end and the terminal is also enhanced.
Abstract:
A flip-chip die package includes a substrate, a die, a plurality of conductive bumps, and a first metal structure, where an upper surface of the die is electrically coupled, using the conductive bumps, to a surface that is of the substrate and that faces the die, and the first metal structure includes a plurality of first metal rods disposed between the substrate and the die, where each first metal rod is electrically coupled to the substrate and the die, and the first metal rods are arranged around a first active functional circuit, and the first active functional circuit includes an electromagnetic radiation capability or an electromagnetic receiving capability in the die.
Abstract:
A method, equipment, and operation management system for detecting and authenticating a terminal in a passive optical network are provided. The method includes the following steps. The terminal has a logic registration code. A central office end receives the logic registration code sent by the terminal. The central office end judges whether the logic registration code of the terminal matches with the logic registration code stored at the central office end, and determines that the terminal is a valid terminal if the logic registration code sent by the terminal matches with the logic registration code stored at the central office end. The central office end records a terminal serial number from the valid terminal, and records a terminal identifier assigned to the valid terminal. By using the provided method, equipment, and operation management system, it is unnecessary to statically configure the terminal SN at the central office end, such that the maintenance cost of the central office end and the terminal is lowered, the flexibility of terminal detection and authentication is improved, and the maintainability of the central office end and the terminal is also enhanced.
Abstract:
A method and apparatus for authentication in a passive optical network are disclosed. In the disclosure, a first terminal serial number of an ONU and a first logic registration code are transmitted from the ONU to an OLT; if the OLT determines that the first terminal serial number does not match a second terminal serial number stored on the OLT, the OLT judges whether the first logic registration code received from the ONU matches a second logic registration code stored on the OLT; the OLT stores the first terminal serial number received from the ONU on the OLT if the first logic registration code matches the second logic registration code.
Abstract:
The present application discloses a method, a system and a related device for transmitting an OMCI message. In the method, an optical line terminal device sends configuration information to an optical network terminal device, where the configuration information is configured to instruct the optical network terminal device to configure a multicast port on the optical network terminal device to an enabled status so as to establish a multicast channel. The optical line terminal device sends an OMCI message that includes multicast information to the optical network terminal device through the multicast channel, where the multicast information includes a multicast port identifier and the multicast port identifier is configured to reflect a mapping between the OMCI message and the multicast port.
Abstract:
This application provides a method and a terminal for allocating a system resource to an application. The method includes: predicting, by a terminal based on a current status of the terminal, a target application to be used; reserving, by the terminal for the target application based on the prediction result, a system resource required for running the target application; and providing, by the terminal according to a resource allocation request of the target application, the reserved system resource for the target application to use.
Abstract:
A clock oscillator includes a first resonator, a second resonator, and a frequency synthesis module, where an output frequency of the first resonator is higher than an output frequency of the second resonator, the frequency synthesis module is configured to generate a synthesis frequency based on the output frequency of the first resonator and the output frequency of the second resonator, and the synthesis frequency is used as a clock frequency output by the clock oscillator. The clock oscillator uses both of the two resonators with the different output frequencies as clock signal sources, and generates a synthesized clock signal by using the frequency synthesis module.
Abstract:
An operational amplifier includes a first amplifying unit, a second amplifying unit, a current source, a first compensation capacitor, and a second compensation capacitor. The first amplifying unit includes a first input transistor, a second input transistor, a third input transistor, and a fourth input transistor. The second amplifying unit includes a fifth input transistor, a sixth input transistor, a seventh input transistor, and an eighth input transistor. One end of the first compensation capacitor is coupled to a drain of the seventh input transistor, and the other end of the first compensation capacitor is coupled to a gate of the eighth input transistor. One end of the second compensation capacitor is coupled to a drain of the eighth input transistor, and the other end of the second compensation capacitor is coupled to a gate of the seventh input transistor.
Abstract:
A synchronization method includes obtaining a first timestamp difference of a packet on a target link. The first timestamp difference is a difference between a sending timestamp and a receiving timestamp of the packet at a first moment. The synchronization method further includes performing packet selection based on the first timestamp difference to obtain a second timestamp difference; obtaining a delay prediction value of the target link at the first moment, compensating for the second timestamp difference based on the delay prediction value to obtain a compensated timestamp difference; and performing time and/or clock synchronization based on the compensated timestamp difference. The second timestamp difference is compensated for based on the delay prediction value, that is, PDV noise introduced to the target link is compensated for. In this way, the PDV noise is reduced.