Abstract:
Techniques related to a method and system of robust speaker recognition activation are described herein. Such techniques apply keyphrase detection and speaker recognition to a subsequent phrase after detecting a waking keyphrase.
Abstract:
Technologies for automated context-aware media curation include a computing device that captures context data associated with media objects. The context data may include location data, proximity data, behavior data of the user, and social activity data. The computing device generates inferred context data using one or more cognitive or machine learning algorithms. The inferred context data may include semantic time or location data, activity data, or sentiment data. The computing device updates a user context model and an expanded media object graph based on the context data and the inferred context data. The computing device selects one or more target media objects using the user context model and the expanded media object graph. The computing device may present context-aware media experiences to the user with the target media objects. Context-aware media experiences may include contextual semantic search and contextual media browsing. Other embodiments are described and claimed.
Abstract:
In some embodiments, the disclosed subject matter involves identifying environmental factors and user context that affect sleep quality. Embodiments use information about the static sleep environment, as well as dynamic environmental factors, such as sound, light, movement, correlated with user context, such as physical and emotional state, as well, as recent behavior to classify sleep data. The correlated and classified sleep data may be used to provide change recommendations, where implementing the recommended change is believed to improve the user's sleep quality. Other embodiments are described and claimed.
Abstract:
Techniques related to a method and system of robust speaker recognition activation are described herein. Such techniques apply keyphrase detection and speaker recognition to a subsequent phrase after detecting a waking keyphrase.
Abstract:
Techniques are provided for training of a text independent (TI) speaker recognition (SR) model. A methodology implementing the techniques according to an embodiment includes measuring context data associated with collected TI speech utterances from a user and identifying the user based on received identity measurements. The method further includes performing a speech quality analysis and a speaker state analysis based on the utterances, and evaluating a training merit value of the utterances, based on the speech quality analysis and the speaker state analysis. If the training merit value exceeds a threshold value, the utterances are stored as training data in a training database. The database is indexed by the user identity and the context data. The method further includes determining whether the stored training data has achieved a sufficiency level for enrollment of a TI SR model, and training the TI SR model for the identified user and context.
Abstract:
A convolutional neural network for classifying time series data uses a dynamic context selection. In one example a method includes receiving a plurality of inputs of different sizes at a convolutional neural network, applying convolution and pooling to each of the inputs to provide a plurality of outputs of different sizes, changing the size of each of the outputs to a selected uniform size, reshaping each of the outputs to a vector, and fully connecting the vectors.
Abstract:
Systems and methods may provide for determining a usage context of a headset and detecting one or more danger-related conditions based on the usage context. Additionally, one or more settings of the headset may be adjusted in response to at least one of the one or more danger-related conditions. In one example, adjusting the one or more settings includes one or more of deactivating noise cancellation, adjusting noise cancellation to increase an intensity of at least one of the one or more danger-related sounds, or adjusting one or more audio playback settings associated with the headset.
Abstract:
Embodiments of apparatus and methods for voice based user enrollment with video assistance are described. In embodiments, an apparatus may include a face recognition module to identify a user from a first plurality of images and a lip motion detection module to detect the lip motion of the user from a second plurality of images. The apparatus may also include a recording module to activate a recording of the user. The apparatus may further include a user enrollment module, coupled with the recording module and the lip motion detection module, to establish a speaker model of the user based at least in part on the recording and the lip motion of the user. Other embodiments may be described and/or claimed.
Abstract:
Systems and methods may provide for determining a usage context of a headset and detecting one or more danger-related conditions based on the usage context. Additionally, one or more settings of the headset may be adjusted in response to at least one of the one or more danger-related conditions. In one example, adjusting the one or more settings includes one or more of deactivating noise cancellation, adjusting noise cancellation to increase an intensity of at least one of the one or more danger-related sounds, or adjusting one or more audio playback settings associated with the headset.