Abstract:
A method and system for auto-curating a media are provided. Media content is received over the network interface. A set of markers is identified for the media content, each marker corresponding to one of a plurality of visible and audible cues in the media content. Segments in the media content are identified based on the identified set of markers. An excitement score is computed for each segment based on the identified markers that fall within the segment. A highlight clip is generated by identifying segments having excitement scores greater than a threshold.
Abstract:
Systems, methods and/or computer program products for controlling and visualizing topic modeling results using a topic modeling interface. The interface allows user directed exploration, understanding and control of topic modeling algorithms, while offering both semantic summaries and/or structure attribute explanations about results. Explanations and differentiations between results are presented using metrics such as cohesiveness and visual displays depicting hierarchical organization. Through user-manipulation of features of the interface, iterative changes are implemented through user-feedback, adjusting parameters, broadening or narrowing topic results, and/or reorganizing topics by splitting or merging topics. As users trigger visual changes to results being displayed, users can compare and contrast output from the topic modeling algorithm. With each change to parameters, users view different explanations informing the user why the changes being displayed occurred, providing users deeper understanding of the topic modeling process, how to manipulate parameters to achieve accurate topic results and adjust granularity of information presented.
Abstract:
Techniques for content generation are provided. A plurality of discriminative terms is determined based at least in part on a first plurality of documents that are related to a first concept, and a plurality of positive exemplars and a plurality of negative exemplars are identified using the plurality of discriminative terms. A first machine learning (ML) model is trained to classify images into concepts, based on the plurality of positive exemplars and the plurality of negative exemplars. A second concept related to the first concept is then determined, based on the first ML model. A second ML model is trained to generate images based on the second concept, and a first image is generated using the second ML model. The first image is then refined using a style transfer ML model that was trained using a plurality of style images.
Abstract:
A method and system are provided. The method includes deriving a set of user attributes from an aggregate analysis of images and videos of a user. The deriving step includes recognizing, by a set of visual classifiers, semantic concepts in the images and videos of the user to generate visual classifier scores. The deriving step further includes deriving, by a statistical aggregator, the set of user attributes. The set of user attributes are derived by mapping the visual classifier scores to a taxonomy of semantic categories to be recognized in visual content. The deriving step also includes displaying, by an interactive user interface having a display, attribute profiles for the attributes and comparisons of the attribute profiles.
Abstract:
Automated analog gauge reading is provided. The method comprises a computer system receiving input of an image and detecting at least one analog gauge in the image. The computer system corrects the orientation of the analog gauge in the image and detects scene text and tick labels on the analog gauge. The computer system determines a position of a pointer on the analog gauge relative to the scene text and outputs a gauge reading value based on an arithmetic progression of tick labels and angle of the pointer with respect to minimum and maximum values on the analog gauge.
Abstract:
Systems, methods and/or computer program products for controlling and visualizing topic modeling results using a topic modeling interface. The interface allows user directed exploration, understanding and control of topic modeling algorithms, while offering both semantic summaries and/or structure attribute explanations about results. Explanations and differentiations between results are presented using metrics such as cohesiveness and visual displays depicting hierarchical organization. Through user-manipulation of features of the interface, iterative changes are implemented through user-feedback, adjusting parameters, broadening or narrowing topic results, and/or reorganizing topics by splitting or merging topics. As users trigger visual changes to results being displayed, users can compare and contrast output from the topic modeling algorithm. With each change to parameters, users view different explanations informing the user why the changes being displayed occurred, providing users deeper understanding of the topic modeling process, how to manipulate parameters to achieve accurate topic results and adjust granularity of information presented.
Abstract:
A neural architecture search method, system, and computer program product that determines, by a computing device, a best fit language model of a plurality of language models that is a best fit for interpretation of a corpus of natural language and interprets, by the computing device, the corpus of natural language using the best fit language model.
Abstract:
A method includes utilizing two or more classifiers to calculate, for an input image, probability scores for a plurality of classes based on visual information extracted from the input image and semantic relationships in a classification hierarchy, wherein each of the two or more classifiers is associated with a given one of two or more levels in the classification hierarchy with each level in the classification hierarchy comprising a subset of the plurality of classes, and classifying the input image based on the calculated probability scores.
Abstract:
A method and system are provided. The method includes deriving a set of user attributes from an aggregate analysis of images and videos of a user. The deriving step includes recognizing, by a set of visual classifiers, semantic concepts in the images and videos of the user to generate visual classifier scores. The deriving step further includes deriving, by a statistical aggregator, the set of user attributes. The set of user attributes are derived by mapping the visual classifier scores to a taxonomy of semantic categories to be recognized in visual content. The deriving step also includes displaying, by an interactive user interface having a display, attribute profiles for the attributes and comparisons of the attribute profiles.
Abstract:
A method and systems are provided. The method includes recognizing semantic concepts in a set of images and assigning semantic scores for the images to predict a gender of a user. The method further includes performing gender prediction from visual content and textual content in the images to respectively generate visual-based gender predictions and textual-based gender predictions. The method also includes combining, using multimodal information fusion, the visual-based gender predictions, the textual-based gender predictions, and the semantic scores, to infer a gender of a user.