Abstract:
A fixture to facilitate fabrication of a heat sink includes a base plate to support a lower section of the heat sink, and multiple registration pins extending from the base plate. A platen is provided over a heat transfer element (HTE) of the heat sink, with the platen including slip fit regions to slip fit around respective registration pins, and with the lower section and HTE disposed between the base plate and the platen, and forming a fixture stack segment aligned with an active region of the cold plate. A load plate is provided which includes slip fit regions configured to slip fit around corresponding registration pins with the load plate disposed over the fixture stack segment. The load plate includes a single load pin centrally disposed to apply a load to the fixture stack segment and facilitate bonding the lower section and HTE together.
Abstract:
Formed hose configurations are provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
Abstract:
A fixture to facilitate fabrication of a heat sink includes a base plate to support a lower section of the heat sink, and multiple registration pins extending from the base plate. A platen is provided over a heat transfer element (HTE) of the heat sink, with the platen including slip fit regions to slip fit around respective registration pins, and with the lower section and HTE disposed between the base plate and the platen, and forming a fixture stack segment aligned with an active region of the cold plate. A load plate is provided which includes slip fit regions configured to slip fit around corresponding registration pins with the load plate disposed over the fixture stack segment. The load plate includes a single load pin centrally disposed to apply a load to the fixture stack segment and facilitate bonding the lower section and HTE together.
Abstract:
Formed hose configurations are provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.
Abstract:
Fabrication of formed hoses is provided which include an innermost elastomer layer, a first fiber-reinforcement region, and multiple second fiber-reinforcement regions. The first fiber-reinforcement region has a first fiber-reinforcement density, and is disposed, at least in part, at a bend region of the formed hose, and the multiple second fiber-reinforcement regions have a second fiber-reinforcement density, and are disposed at least at the first and second end regions of the formed hose. The second fiber-reinforcement density is greater than the first fiber-reinforcement density, and results in the first and second ends of the formed hose being less radially-deformable than the bend region of the hose. This facilitates providing a mechanical fluid-tight connection with a hose barb fitting when the formed hose is slid over the hose barb fitting, absent any clamp over the formed hose and hose barb fitting connection.