Abstract:
Disclosed herein are apparatus and method for resisting external articulation of one or more joints of a manipulator assembly when the joints are approaching mechanical limits. For example, an articulable system may include a joint mechanism, an actuator coupled to the joint mechanism, a sensor system for sensing a joint state and a controller. The controller can operate the articulable system in an external articulation facilitation mode. The controller can command the actuator to resist movement of the joint in response to the joint state indicating the joint is moving toward a mechanical limit location with a joint velocity meeting a first velocity criterion. The controller can also command the actuator resist movement of the joint at a second joint position when the joint velocity meets a second criterion.
Abstract:
A medical system includes a manipulator arm including a movable distal portion, a proximal portion coupled to a base, and joints between the distal portion and the base. A processor coupled to the manipulator arm performs operations including calculating a first movement of the joints in a null-space of a Jacobian of the manipulator arm, the first movement being calculated in accordance with a first objective for arm-to-patient collision avoidance. The operations further include calculating a second movement of the joints in the null-space, the second movement being calculated in accordance with a second objective for arm-to-arm collision avoidance, and combining at least the first and second movements into a combined movement in a manner allowing the first objective to overpower the second objective, and driving the joints to effect the combined movement.
Abstract:
Devices, systems, and methods for providing commanded movement of an end effector of a manipulator concurrent with a desired movement of one or more joints of the manipulator according to one or more consolidated null-space objectives. The null-space objectives may include a joint state combination, relative joint states, range of joint states, joint state profile, kinetic energy, clutching movements, collision avoidance movements, singularity avoidance movements, pose or pitch preference, desired manipulator configurations, commanded reconfiguration of the manipulator, and anisotropic emphasis of the joints. Methods include calculating multiple null-space movements according to different null-space objectives, determining an attribute for each and consolidating the null-space movements with a null-space manager using various approaches. The approaches may include applying weighting, scaling, saturation levels, priority, master velocity limiting, saturated limited integration and various combinations thereof.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for providing a desired movement of one or more joints of a manipulator arm having a plurality of joints with redundant degrees of freedom while effecting commanded movement of a distal end effector of the manipulator. Methods include defining a constraint, such as a network of paths, within a joint space defined by the one or more joints and determining a movement of the plurality of joints within a null-space to track the constraints with the one or more joints. Methods may further include calculating a reconfiguration movement of the joints and modifying the constraints to coincide with a reconfigured position of the one or more joints. Various configurations for devices and systems utilizing such methods are provided herein.
Abstract:
Devices, systems, and methods for positioning an end effector or remote center of a manipulator arm by floating a first set of joints within a null-perpendicular joint velocity sub-space and providing a desired state or movement of a proximal portion of a manipulator arm concurrent with end effector positioning by driving a second set of joints within a null-space orthogonal to the null-perpendicular space. Methods include floating a first set of joints within a null-perpendicular space to allow manual positioning of one or both of a remote center or end effector position within a work space and driving a second set of joints according to an auxiliary movement calculated within a null-space according to a desired state or movement of the manipulator arm during the floating of the joints. Various configurations for devices and systems utilizing such methods are provided herein.