Abstract:
An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
Abstract:
An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
Abstract:
An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
Abstract:
A display device is provided, which includes: light emitting elements; switching transistors transmitting data signals in response to scanning signals; driving transistors, each driving transistor electrically connected to a driving signal line and one of the switching transistors and supplying a current to the light emitting elements in response to an output signal of the one of the switching transistors and the driving signal of the driving signal line; and a first capacitor electrically connected between each driving transistor and each driving signal line; and a second capacitor electrically connected between each light emitting element and each driving transistor, wherein the first and the second capacitors transmit the driving signal by capacitive coupling.
Abstract:
An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
Abstract:
Disclosed is an apparatus that prevents a degradation of image quality due to a deterioration of a driving apparatus in an organic electro-luminescence display device.
Abstract:
An electro-luminescence device including an electro-luminescence element and a thin film transistor electrically connected to the electro-luminescence element. The thin film transistor includes a gate electrode formed over a substrate, an insulating layer formed over the gate electrode, and a first semiconductor pattern formed over the insulating layer. An etch stop layer is formed over the first semiconductor layer. A second semiconductor pattern is formed over the etch stop layer at one side of the etch stop layer, and a third semiconductor pattern is formed over the etch stop layer at another side of the etch stop layer. A source electrode is formed over the second semiconductor pattern, and a drain electrode is formed over the third semiconductor pattern.
Abstract:
A display device is provided, which includes: light emitting elements; switching transistors transmitting data signals in response to scanning signals; driving transistors, each driving transistor electrically connected to a driving signal line and one of the switching transistors and supplying a current to the light emitting elements in response to an output signal of the one of the switching transistors and the driving signal of the driving signal line; and a first capacitor electrically connected between each driving transistor and each driving signal line; and a second capacitor electrically connected between each light emitting element and each driving transistor, wherein the first and the second capacitors transmit the driving signal by capacitive coupling.
Abstract:
A thin film transistor optical detecting sensor includes an array substrate having a transparent substrate, a plurality of sensor thin film transistors disposed on the transparent substrate, each having a first silicon layer of a first thickness, a plurality of storage capacitors, each connected with a corresponding one of the plurality of sensor thin film transistors, storing charges of an optical current, and a plurality of switch thin film transistors, each having a second silicon layer of a second thickness less than the first thickness.
Abstract:
An organic light emitting diode display includes a plurality of pixels. Each pixel includes a light emitting element and a driving transistor coupled to the light emitting element. The pixels may be arranged in a matrix. The pixels include first pixels, second pixels, and third pixels, the driving transistors of the first to the third pixels occupy different areas, and the light emitting elements of the first to the third pixels occupy substantially equal area.