Abstract:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
Abstract:
A connector system employs an electromechanical connector to connect to a complementary electromechanical connector on an electronic device in a medical system. A shroud surrounds the electromechanical connector and is conductive and shaped to provide a thermal contact to the electronic device. A shielded cable can be electrically coupled to the electromechanical connector and extending through an opening in the shroud, and an electromagnetic shield attaches to the shroud and surrounds the portion of the shielded cable extending from the shroud. A mechanical lock may be included with a spring to press the shroud against the electronic device when the mechanical lock engages the electronic device.
Abstract:
In one embodiment, a method for a stereo endoscope includes receiving electromagnetic radiation through an inner protective window; focusing the electromagnetic radiation with a left optical component toward a left pixel array of a stereo image sensor along an optical axis of the left optical component parallel with but offset from a center axis of the left pixel array; and focusing the electromagnetic radiation with a right optical component toward a right pixel array of the stereo image sensor along an optical axis of the right optical component parallel with but offset from a center axis of the right pixel array. The left pixel array and the right pixel array are offset from the center optical axis of the stereo endoscope to provide stereo image convergence.
Abstract:
In one embodiment, a method for a stereo endoscope includes receiving electromagnetic radiation through an inner protective window; focusing the electromagnetic radiation with a left optical component toward a left pixel array of a stereo image sensor along an optical axis of the left optical component parallel with but offset from a center axis of the left pixel array; and focusing the electromagnetic radiation with a right optical component toward a right pixel array of the stereo image sensor along an optical axis of the right optical component parallel with but offset from a center axis of the right pixel array. The left pixel array and the right pixel array are offset from the center optical axis of the stereo endoscope to provide stereo image convergence.
Abstract:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
Abstract:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
Abstract:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
Abstract:
An endoscopic system can include an endoscope shaft having a proximal end and a distal end, and an electrically active sensor system including at least one sensor mounted proximate the distal end and positioned to sense at least one characteristic of an environment in which the distal end is located. The capacitance of the sensor system relative to earth ground maintains current leakage to a level that meets a cardiac float rating.
Abstract:
An endoscopic system can include an endoscope shaft having a proximal end and a distal end. The endoscopic system can have a sensor system that includes an electrically active sensor mounted proximate the distal end and positioned to sense at least one characteristic of an environment in which the distal end is located, a data signal transmission line connected to the sensor to transmit data signals between the sensor and a signal processor, and an electrical power transmission line connected to the sensor to transmit power to the sensor. The endoscopic system also can include a floating ground element arranged to provide an electrical reference for the sensor system. Voltage induced by an electromagnetic interference external to the endoscopic system on at least one of the data signal transmission line or electrical power line is substantially similar to the voltage induced by the electromagnetic interference on the floating ground element.
Abstract:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.