摘要:
A method for determining a shape of a lumen in an anatomical structure comprises reading information from a plurality of strain sensors disposed substantially along a length of a flexible medical device when the flexible medical device is positioned in the lumen. When the flexible medical device is positioned in the lumen, the flexible medical device conforms to the shape of the lumen. The method further comprises computationally determining, by a processing system, the shape of the lumen based on the information from the plurality of strain sensors.
摘要:
In one embodiment, a minimally invasive surgical system includes a patient side manipulator, a hermetically sealed endoscopic camera instrument, a vision cart, and a monitor. The patient side manipulator has a robotic arm. The endoscopic camera instrument has a housing at a proximal end to couple to the robotic arm. The endoscopic camera instrument further has a hermetically sealed camera sensor at a distal end, a shaft coupled to the housing, and a wristed joint coupled between the shaft and the camera sensor. The vision cart has a camera control unit coupled in communication with the hermetically sealed camera sensor to capture the images of the surgical site. The monitor is coupled in communication with the camera control unit to display the captured images of the surgical site.
摘要:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
摘要:
In one embodiment, an endoscopic camera for a robotic surgical system includes a stereo camera module mounted to a robotic arm of a patient side cart. The optical and electro-optic components of the camera module are hermetically sealed within a first housing. Signals from an electro-optic component travel through traces in a ceramic substrate forming one side of the hermetically sealed first housing. A second housing surrounds the first housing and optical fibers are dispersed between the housings to provide lighting in a body cavity. The camera module may be sterilized by an autoclave.
摘要:
A stereoscopic endoscope comprises a first lens train; a second lens train; a prism; and a continuous image sensor surface. The first lens train directs light along a first path through the first lens train and the prism to be incident on a first region of the continuous image sensor, and the second lens train directs light along a second path through the second lens train and the prism to be incident on a second region of the continuous image sensor.
摘要:
In one embodiment, a method for a stereo endoscope includes receiving electromagnetic radiation through an inner protective window; focusing the electromagnetic radiation with a left optical component toward a left pixel array of a stereo image sensor along an optical axis of the left optical component parallel with but offset from a center axis of the left pixel array; and focusing the electromagnetic radiation with a right optical component toward a right pixel array of the stereo image sensor along an optical axis of the right optical component parallel with but offset from a center axis of the right pixel array. The left pixel array and the right pixel array are offset from the center optical axis of the stereo endoscope to provide stereo image convergence.
摘要:
In one embodiment, a method for a stereo endoscope includes receiving electromagnetic radiation through an inner protective window; focusing the electromagnetic radiation with a left optical component toward a left pixel array of a stereo image sensor along an optical axis of the left optical component parallel with but offset from a center axis of the left pixel array; and focusing the electromagnetic radiation with a right optical component toward a right pixel array of the stereo image sensor along an optical axis of the right optical component parallel with but offset from a center axis of the right pixel array. The left pixel array and the right pixel array are offset from the center optical axis of the stereo endoscope to provide stereo image convergence.
摘要:
In one embodiment, a minimally invasive surgical system includes a patient side manipulator, a hermetically sealed endoscopic camera instrument, a vision cart, and a monitor. The patient side manipulator has a robotic arm. The endoscopic camera instrument has a housing at a proximal end to couple to the robotic arm. The endoscopic camera instrument further has a hermetically sealed camera sensor at a distal end, a shaft coupled to the housing, and a wristed joint coupled between the shaft and the camera sensor. The vision cart has a camera control unit coupled in communication with the hermetically sealed camera sensor to capture the images of the surgical site. The monitor is coupled in communication with the camera control unit to display the captured images of the surgical site.
摘要:
In one embodiment, a method for a stereo endoscope includes receiving electromagnetic radiation through an inner protective window; focusing the electromagnetic radiation with a left optical component toward a left pixel array of a stereo image sensor along an optical axis of the left optical component parallel with but offset from a center axis of the left pixel array; and focusing the electromagnetic radiation with a right optical component toward a right pixel array of the stereo image sensor along an optical axis of the right optical component parallel with but offset from a center axis of the right pixel array. The left pixel array and the right pixel array are offset from the center optical axis of the stereo endoscope to provide stereo image convergence.
摘要:
A stereoscopic image capture device includes a first image sensor, a second image sensor, a first frame timer, and a second frame timer. The first and second frame timers are different frame timers. The first image sensor includes a first plurality of rows of pixels. The second image sensor includes a second plurality of rows of pixels. The first and second image sensors can be separate devices or different areas of a sensor region in an integrated circuit. The first frame timer is coupled to the first image sensor to provide image capture timing signals to the first image sensor. The second frame timer coupled to the second image sensor to provide image capture timing signals to the second image sensor.