Abstract:
Disclosed are assemblies and articles for restricting leakage of a pressurized fluid from a cavity. In accordance with an embodiment of the invention, a vane support defines a land, and a neck region of a bladed rotor assembly defines a segmented ring. The segmented ring protrudes outward from the bladed rotor assembly in the neck region, spans across the cavity and cooperates with the land to define a seal.
Abstract:
A Ceramic Matrix Composites (CMC) airfoil for a gas turbine engine includes a first multiple of CMC plies which define a suction side, a first airfoil portion of the first multiple of CMC plies at least partially parallel to an airfoil axis. A second multiple of CMC plies define a pressure side, a second airfoil portion of the second multiple of CMC plies at least partially parallel to the airfoil axis and bonded to the first airfoil portion.
Abstract:
A mounting apparatus for a turbine exhaust case (TEC) is provided. The mounting apparatus may include a neck, support links and a plurality of fastening pins. The neck may include an upper portion that is receivable within a pylon associated with the TEC and at least one neck aperture extending therethrough. The support links may downwardly extend from a lower portion of the neck. The support links may be configured to at least partially receive a section of the TEC. Each support link may include at least one link aperture extending therethrough. The fastening pins may include at least one neck pin extending through the neck aperture and at least one link pin extending through the link aperture of each support link.
Abstract:
A Ceramic Matrix Composites (CMC) airfoil for a gas turbine engine includes at least one CMC ply which defines a suction side, an outer platform, a pressure side and an inner platform with a continuous “I”-shaped fiber geometry.
Abstract:
A method for mounting a gas turbine engine having a compressor section, a combustor section, a turbine section, a pylon and a rear mount bracket, includes positioning the mounting bracket between the gas turbine engine and the pylon. The mounting bracket is connected to the turbine case reacting a least a vertical load, a side load, a thrust load, and a torque load from the gas turbine engine through the mounting bracket. The mounting bracket is attached to the pylon reacting the same loads from the gas turbine engine.
Abstract:
A seal for sealing a rotor of a rotary machine to a stator thereof which circumscribes the rotor and is separated therefrom by a gap comprises a nonrotational sealing element received within an annular slot in the stator and radially translatable with respect thereto, and extending into the gap for sealing to rotational sealing element carried by the rotor. A resilient biasing element received between the nonrotational sealing element and a floor of the slot biases the nonrotational sealing element radially inwardly toward the rotational sealing element and limits radially outward movement of the nonrotational sealing element. A guide extending into said gap from the slot engages the nonrotational sealing element to prevent axial misalignment thereof with the machine's rotor.
Abstract:
A Ceramic Matrix Composite (CMC) platform for an airfoil of a gas turbine engine includes a CMC platform segment which at least partially defines an airfoil profile.
Abstract:
A Ceramic Matrix Composite (CMC) airfoil for a gas turbine engine includes a CMC root section which extends to form a CMC airfoil section, the CMC root section defines a bore along a non-linear axis.
Abstract:
A Ceramic Matrix Composites (CMC) airfoil for a gas turbine engine includes at least one CMC ply which defines a suction side, an outer platform, a pressure side and an inner platform with a continuous “I”-shaped fiber geometry.
Abstract:
A gas turbine engine includes a CMC static structure and a rotor module with a multiple of CMC airfoils, a radial growth of said rotor module matched with said CMC static structure.