Abstract:
In one embodiment, a liquid crystal display panel includes an array substrate and a counter substrate each having a display region and a peripheral region arranged adjacent to the display region. A resin layer is formed either one of the array substrate and the counter substrate. A protrusion in the shape of a wall is arranged on the resin layer with a gap between the protrusion and the substrate opposing the protrusion. A seal material is formed between the array substrate and the counter substrate, and arranged between a peripheral portion of the display region and the protrusion for attaching the array substrate and the counter substrate. A liquid crystal layer is formed in a surrounded region by the array substrate, the counter substrate and the seal material.
Abstract:
According to one embodiment, a display device includes a first light shielding layer, a second light shielding layer, a first semiconductor layer, a second semiconductor layer, a gate line, a first source line, a second source line, a switching element, and a pixel electrode, wherein an area in which the first light shielding layer and the pixel electrode are opposed to each other and an area in which the second light shielding layer and the pixel electrode are opposed to each other are equal in size.
Abstract:
According to one embodiment, a display panel includes an array substrate and a counter substrate. The array substrate includes an inorganic insulating film, a first wiring line, a second wiring line, an organic insulating film, a slit and a moisture-proof member. The slit is formed to extend through the organic insulating film between the first wiring line and the second wiring line. The moisture-proof member is filled in the slit and is in contact with the inorganic insulating film.
Abstract:
According to one embodiment, a wiring substrate includes a pad group of a first pad to supply a power source voltage of low level, a second pad to supply a power source voltage of high level, and a third pad to supply a necessary signal for displaying an image, a common line, a first connection line to connect the first pad with the common line, a second connection line to connect the second pad with the common line, and a third connection line to connect the third pad with the common line, wherein the first connection line and the second connection line are formed of polysilicon in which no impurity is doped, and the third connection line and the common line are formed of polysilicon in which an impurity is doped.
Abstract:
In one embodiment, a first shield electrode and a second shield electrode are arranged on a first substrate. A first source line and a second source line are arranged facing the first and second shield electrodes through an insulating layer, respectively. A first main common electrode and a second main common electrode are formed facing the first and second source lines through an insulating layer, respectively. A main pixel electrode is formed so as to locate between the first and second main common electrodes. A second substrate includes a third main common electrode and a fourth main common electrode facing the first and second main common electrodes, respectively. A liquid crystal layer is held between the first and second substrates. The first, second, third and fourth main common electrodes are set to the same electric potential.
Abstract:
According to one embodiment, a display device includes a first light shielding layer, a second light shielding layer, a first semiconductor layer, a second semiconductor layer, a gate line, a first source line, a second source line, a switching element, and a pixel electrode, wherein an area in which the first light shielding layer and the pixel electrode are opposed to each other and an area in which the second light shielding layer and the pixel electrode are opposed to each other are equal in size.
Abstract:
In one embodiment, a first shield electrode and a second shield electrode are arranged on a first substrate. A first source line and a second source line are arranged facing the first and second shield electrodes through an insulating layer, respectively. A first main common electrode and a second main common electrode are formed facing the first and second source lines through an insulating layer, respectively. A main pixel electrode is formed so as to locate between the first and second main common electrodes. A second substrate includes a third main common electrode and a fourth main common electrode facing the first and second main common electrodes, respectively. A liquid crystal layer is held between the first and second substrates. The first, second, third and fourth main common electrodes are set to the same electric potential.
Abstract:
According to one embodiment, a display device includes a first light shielding layer, a second light shielding layer, a first semiconductor layer, a second semiconductor layer, a gate line, a first source line, a second source line, a switching element, and a pixel electrode, wherein an area in which the first light shielding layer and the pixel electrode are opposed to each other and an area in which the second light shielding layer and the pixel electrode are opposed to each other are equal in size.
Abstract:
According to one embodiment, a wiring substrate includes a pad group of a first pad to supply a power source voltage of low level, a second pad to supply a power source voltage of high level, and a third pad to supply a necessary signal for displaying an image, a common line, a first connection line to connect the first pad with the common line, a second connection line to connect the second pad with the common line, and a third connection line to connect the third pad with the common line, wherein the first connection line and the second connection line are formed of polysilicon in which no impurity is doped, and the third connection line and the common line are formed of polysilicon in which an impurity is doped.