摘要:
A system and method are provided for separately distributing edge-device labels and routing information across routing areas of a computer network. Because the edge-device labels are distributed separately from network routing information, the process of distributing the edge-device labels does not preclude conventional edge-device address summarizations. Illustratively, a novel “label mapping” LSA is employed for distributing the edge-device labels across routing areas. The label-mapping LSA may be embodied as an area-scope OSPF opaque LSA (type 10) or an IS-IS LSP containing TLVs of area scope. Advantageously, the present invention is generally applicable whenever label values are allocated to edge devices in a multi-area computer network and data is “tunneled” through the network from one edge device to another.
摘要:
A system and method are provided for separately distributing edge-device labels and routing information across routing areas of a computer network. Because the edge-device labels are distributed separately from network routing information, the process of distributing the edge-device labels does not preclude conventional edge-device address summarizations. Illustratively, a novel “label mapping” LSA is employed for distributing the edge-device labels across routing areas. The label-mapping LSA may be embodied as an area-scope OSPF opaque LSA (type 10) or an IS-IS LSP containing TLVs of area scope. Advantageously, the present invention is generally applicable whenever label values are allocated to edge devices in a multi-area computer network and data is “tunneled” through the network from one edge device to another.
摘要:
A method and computer system for auto-routing of multi-hop pseudowires is presented. A first Provider Edge (PE) device receives an advertisement from a layer 2 (L2) capable network device, the advertisement including routing state for reaching the L2 device. A first Border Gateway Protocol (BGP) table is populated with the routing state for said L2 capable network device which is reachable by way of an address family reserved for L2 end point reachability information. The first PE device advertises the first BGP table information within a first Service Provider (SP) network such that a multi-hop Pseudowire is capable of being established which includes the L2 capable device.
摘要:
In general, techniques are described for enhancing the Application-Layer Traffic Optimization (ALTO) service to supplement network topological grouping with location-based groupings to account for endpoint mobility. For example, as described herein, an ALTO server maintains physical location information for a network of one or more endpoints that provides a service. A PID generator of the ALTO server aggregates the endpoints into a set of one or more PIDs based at least on the physical location information for the endpoints, wherein each PID is associated with a subset of the endpoints. The ALTO server generates network and cost maps for the ALTO service that include PID entries to identify a respective subset of the endpoints associated with each of the set of PIDs and cost entries that incorporate cost that reflect physical distances among endpoints.
摘要:
In general, techniques are described for transmitting MPLS labels over a network. More specifically, a network device such a router receives a packet to be forwarded according to a label switching protocol, such as Multi-Protocol Label Switching (MPLS). The router may determine a service instance for the packet based on a client device from which the packet originated. The network device may determine one or more services to apply to the packet based on the service instance for the packet and generate a label which having a service instance portion and a service information portion. The network device may append the label to the packet to form an MPLS-encapsulated packet, and may forward the MPLS-encapsulated packet via an output interface according to the label switching protocol.
摘要:
Techniques are described for detecting failure or degradation of a service enabling technology function independent from an operational state of a service node hosting the service enabling technology function. For example, a service node may provide one or more service enabling technology functions, and service engineered paths may be traffic-engineered through a network to service node network devices that host a service enabling technology function. A monitor component at the service layer of the service node can detect failure or degradation of one or more service enabling technology functions provided by the service node. The monitor component reports detection of failure or degradation to a fault detection network protocol in a forwarding plane of the service node. The fault detection network protocol communicates with an ingress router of a service engineered path to trigger fast reroute by the ingress of traffic flows to bypass the affected service enabling technology function.
摘要:
In one example, a network device receives a packet to be forwarded according to a label switching protocol, determines a service to be performed on the packet by a service network device, sends a label request message to the service network device, wherein the label request message indicates support for labels having a particular length, wherein the particular length is larger than twenty bits (e.g., forty bits), and wherein the label request message specifies the service to be performed on the packet, receives, in response to the label request message, a label mapping message defining a label of the particular length, appends the label to the packet to form a Multi-Protocol Label Switching (MPLS)-encapsulated packet, and forwards the MPLS-encapsulated packet according to the label switching protocol.
摘要:
In general, techniques are described for providing feedback loops for service engineered paths. A service node comprising an interface and a control unit may implement the techniques. The interface receives traffic via a path configured within a network to direct the traffic from an ingress network device of the path to the service node. The control unit applies one or more services to the traffic received via the path and generates service-specific information related to the application of the one or more services to the traffic. The interface then sends the service-specific information to at least one network device configured to forward the traffic via the path so that the at least one network device configured to forward the traffic via the path is able to adapt the path based on the service-specific information.
摘要:
Techniques are described for detecting failure or degradation of a service enabling technology function independent from an operational state of a service node hosting the service enabling technology function. For example, a service node may provide one or more service enabling technology functions, and service engineered paths may be traffic-engineered through a network to service node network devices that host a service enabling technology function. A monitor component at the service layer of the service node can detect failure or degradation of one or more service enabling technology functions provided by the service node. The monitor component reports detection of failure or degradation to a fault detection network protocol in a forwarding plane of the service node. The fault detection network protocol communicates with an ingress router of a service engineered path to trigger fast reroute by the ingress of traffic flows to bypass the affected service enabling technology function.
摘要:
In general, techniques are described for providing feedback loops for service engineered paths. A service node comprising an interface and a control unit may implement the techniques. The interface receives traffic via a path configured within a network to direct the traffic from an ingress network device of the path to the service node. The control unit applies one or more services to the traffic received via the path and generates service-specific information related to the application of the one or more services to the traffic. The interface then sends the service-specific information to at least one network device configured to forward the traffic via the path so that the at least one network device configured to forward the traffic via the path is able to adapt the path based on the service-specific information.