Abstract:
The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
Abstract:
The present invention provides methods to promote the differentiation of pluripotent stem cells into insulin producing cells. In particular, the present invention provides a method to produce a population of cells, wherein greater than 80% of the cells in the population express markers characteristic of the definitive endoderm lineage.
Abstract:
The present invention provides methods of differentiating pluripotent cells into beta cell using suspension clustering. The methods of the invention use control of one or more of pH, cell concentration, and retinoid concentration to generate a nearly homogenous population of PDX1/NKX6.1 co-expressing cells by suppressing precocious NGN3 expression and promoting NKX6.1 expression. Also, the nearly homogenous population of PDX1/NKX6.1 co-expressing cells may be further differentiated in vitro to form a population of pancreatic endocrine cells that co-express PDX1, NKX6.1, insulin and MAFA.
Abstract:
The present invention provides methods of preparing aggregated pluripotent stem cell clusters for differentiation. Specifically, the invention discloses methods of differentiating pluripotent cells into beta cell, cardiac cell and neuronal cell lineages using suspension clustering. The methods involve preparing the aggregated cell clusters followed by differentiation of these clusters.