摘要:
A method and system are provided in which a video processor may select a 2D video output format or a 3D video output format. The video processor may generate composited video data by combining video data from a video source, and one or both of video data from additional video sources and graphics data from graphics source(s). The video processor may select the order in which such combination is to occur. The video data from the various video sources may comprise one or both of 2D video data and 3D video data. The graphics data from the graphics sources may comprise one or both of 2D graphics data and 3D graphics data. The video processor may perform 2D-to-3D and/or 3D-to-2D format conversion when appropriate to generate the composited video data in accordance with the selected output video format.
摘要:
A method and system are provided in which a video processor may select a 2D video output format or a 3D video output format. The video processor may generate composited video data by combining video data from a video source, and one or both of video data from additional video sources and graphics data from graphics source(s). The video processor may select the order in which such combination is to occur. The video data from the various video sources may comprise one or both of 2D video data and 3D video data. The graphics data from the graphics sources may comprise one or both of 2D graphics data and 3D graphics data. The video processor may perform 2D-to-3D and/or 3D-to-2D format conversion when appropriate to generate the composited video data in accordance with the selected output video format.
摘要:
Aspects of a method and system for handling multiple 3-D video formats are provided. A video processing system may receive one or more video frames comprising first 3-D view pixel data and second 3-D view pixel data suitable for generating a three-dimensional (3-D) video frame. The video system may be operable to determine an arrangement of the first 3-D view pixel data and the second view pixel data in the one or more video frames. In instances that the determined arrangement is not a desired arrangement, the video processing system may be operable to convert the one or more video frames to the desired arrangement. Either or both of the determined arrangement and the desired arrangement may comprise a series of two single-view frames. Either or both of the determined arrangement and the desired arrangement may comprise a single frame comprising the first 3-D view pixel data and the second 3-D view pixel data.
摘要:
Methods and systems for mosaic mode display of video are disclosed. Aspects of one method may include generating video data for a plurality of video windows using a single video feeder module comprising a single video scaler and a single video capture module. The video data for the video windows may be generated in a single frame time. Register DMA may be used to transfer register update data (RUD) to a plurality of registers to configure video processing for generating video data for a video window. The plurality of RUDs may be generated in response to a single interrupt to a processor, and may be configured as a linked list or stored sequentially in memory. The configuring may occur prior to generating video data for the corresponding video window. Video processing for a subsequent video window may be configured automatically after generating video data for the present video window.
摘要:
In a signal processing system, a programming system and method for a video network are provided. An event may trigger an RDMA controller to execute current instructions in a register update list. The triggering event may be a start-of-field signal from a live source or an end-of-frame signal. The current instructions may be used to modify the mode of operation of at least one of the network elements in the video network. The modification to the mode of operation may depend on whether the current video field is top field originated or bottom field originated. An interrupt may be used to initiate an interrupt handler that generates at least one new instruction and that updates the new instructions in the register update list. When a trigger occurs prior to an update of the register update list, the RDMA controller may execute the current instructions in the register update list.
摘要:
Methods and systems for mosaic mode display of video are disclosed. Aspects of one method may include generating video data for a plurality of video windows using a single video feeder module comprising a single video scaler and a single video capture module. The video data for the video windows may be generated in a single frame time. Register DMA may be used to transfer register update data (RUD) to a plurality of registers to configure video processing for generating video data for a video window. The plurality of RUDs may be generated in response to a single interrupt to a processor, and may be configured as a linked list or stored sequentially in memory. The configuring may occur prior to generating video data for the corresponding video window. Video processing for a subsequent video window may be configured automatically after generating video data for the present video window.
摘要:
A method and system that blend graphics layers and a video layer. The graphics layers may be above and below the video layer, which may be a streaming video. The graphics layers may be stored in memory, blended and stored back in memory. The blended graphics layers may be combined with streaming video and output on a display. Blending the graphics in memory may be done offline and may save processing time and improve real-time combining with streaming video. In an embodiment of the present invention, there may be several layers of graphics below the video layer, and several graphics layers above the video layer. The top graphics layers may be blended into one top graphics layer, and the bottom graphics layers may be blended into one bottom graphics layer. The top and bottom graphics layers may be then blended into one graphics layer and combined with the video layer.
摘要:
A method and system are provided in which an integrated circuit (IC) comprises multiple devices that may be selectively interconnected to route and process 3D video data. The IC may be operable to determine whether to scale the 3D video data before the 3D video data is captured to memory or after the captured 3D video data is retrieved from memory, and selectively interconnect one or more of the devices based on the determination. The selective interconnection may be based on input and output formats of the 3D video data, and on a scaling factor. The input format may be a left-and-right (L/R) format or an over-and-under (O/U) format. Similarly, the output format may be a L/R format or an O/U format. The selective interconnection may be based on input and output pixel rates of the 3D video data. Moreover, the selective interconnection may be determined on a picture-by-picture basis.
摘要:
A 3-dimensional (3D) video receiver may be operable to convert a decompressed 3D video frame having a 3D video interlaced format to generate a first 3D video frame having a first 3D video progressive format by performing an inverse pulldown. The generated first 3D video frame having the first 3D video progressive format may be converted to generate a second 3D video frame having a second 3D video progressive format. The generated first 3D video frame having the first 3D video progressive format may be scaled to generate the second 3D video frame having the second 3D video progressive format. When the 3D video receiver is operating in an electronic program guide (EPG) mode or in a graphics over video mode, the generated second 3D video frame having the second 3D video progressive format may be blended with graphics.
摘要:
A 3-dimensional (3D) video receiver may be operable to scale a decompressed 3D video frame having a first 3D video progressive format to generate a 3D video frame having a second 3D video progressive format, where the second 3D video progressive format comprises a high-definition multimedia interface (HDMI) format. When operating in an electronic program guide mode or a graphics over video mode, the 3D video frame having the second 3D video progressive format may be blended with graphics. The 3D video frame having the second 3D video progressive format may be converted to generate a 3D video frame having a 3D video interlaced format by performing a pulldown. The 3D video frame having the second 3D video progressive format at a 50 Hz frame rate may be frame-rate upconverted to generate a 3D video frame having a third 3D video progressive format at a 60 Hz frame rate.