摘要:
A fast reroute (FRR) technique is implemented at the edge of a network. In accordance with the technique, if an edge device detects a node or link failure that prevents it from communicating with a neighboring routing domain, the edge device reroutes at least some data packets addressed to that domain to a backup edge device which, in turn, forwards the packets to the neighboring domain. The rerouted packets are designated as being “protected” (i.e., rerouted) data packets before they are forwarded to the backup edge device. To differentiate which data packets are protected and which are not, the backup edge device employs different sets of VPN label values for protected and non-protected network traffic. That is, the backup edge device may allocate two different VPN label values for at least some destination address prefixes that are reachable through the neighboring domain: a first VPN label value for FRR protected traffic and a second VPN label value for non-protected traffic. Upon receiving a data packet containing a protected VPN label value, the backup edge device is not permitted to reroute the packet a second time, e.g., in response to another inter-domain node or link failure, thereby preventing loops from developing at the edge of the network.
摘要:
A fast reroute (FRR) technique that may be deployed at the edge of a network having first and second edge devices coupled to a neighboring routing domain. If the first edge device detects a node or link failure that prevents it from communicating with the neighboring domain, the first edge device reroutes at least some data packets addressed to the neighboring domain to the second edge device. The second edge device receives the rerouted packets and then forwards the packets to the neighboring domain. Notably, the second edge device is not permitted to reroute the received packets a second time, e.g., upon identifying another inter-domain node or link failure. As such, loops are avoided at the edge of the network and packets are rerouted to the neighboring routing domain faster and more efficiently than in prior implementations.
摘要:
A method, apparatus and computer program product for providing convergence for a dual-homed site in a network is presented. An occurrence of a failure between a first Provider Edge (PE) device and a first Customer Edge (CE) device in communication with a dual-homed site is detected. A determination is made whether an alternate route exists for the dual-homed site in a routing table associated with the first PE device. When an alternate route exists then a routing entry associated with the first CE device in a routing table of said first PE device is kept from being deleted for a predetermined amount of time, the routing table is modified to reference the alternate route, the routing entry is rewritten to perform a POP and lookup in a VRF table of the first PE device, and the routing entry is deleted after the predetermined amount of time has elapsed.
摘要:
In one embodiment, a stateful path computation element (PCE) in a computer network determines a need to route at least a threshold number of tunnels, and in response, triggers a routing update from a determined set of routers. Having updated the routing information and available network resources for the set of routers, the stateful PCE may then compute the tunnels based on the update.
摘要:
In one embodiment, a router initiates reroutes of one or more tunnels at the router as part of optimization of a plurality of tunnels in a computer network, and stores an original state of the one or more tunnels at the router prior to the optimization. By detecting whether path computation element (PCE) failure occurs prior to completion of the optimization, the router may revert to the original state of the one or more tunnels in response to PCE failure prior to completion of the optimization.
摘要:
In one embodiment, a particular device in a computer network maintains a locally owned tunnel-state table, and joins a distributed hash table (DHT) ring. In addition, the locally owned tunnel-state table is shared with other devices of the DHT ring to establish a DHT-owned tunnel-state table. The particular device (and other devices) determines ownership of link-state advertisements (LSAs) for a specific portion of a traffic engineering database (TED) according to the DHT ring. As such, when the particular device (or any device) computes a path for a tunnel using a local TED, the particular device may request permission to use resources along the computed path that were advertised in particular LSAs from owners of those particular LSAs when not owned by the particular device.
摘要:
In one embodiment, a path computation element (PCE) in a computer network receives one or more path computation requests (PCReqs), and records a time of each PCReq and the corresponding requested bandwidth. Based on this information, the PCE may determine a traffic profile of the computer network, and may augment a traffic engineering database (TED) with requested bandwidth according to time based on the traffic profile. As such, prior to a particular time, the PCE may determine placement of tunnels within the traffic profile for the particular time.
摘要:
In one embodiment, a stateful path computation element (PCE) in a computer network determines a need to route at least a threshold number of tunnels, and in response, triggers a routing update from a determined set of routers. Having updated the routing information and available network resources for the set of routers, the stateful PCE may then compute the tunnels based on the update.
摘要:
In one embodiment, a router initiates reroutes of one or more tunnels at the router as part of optimization of a plurality of tunnels in a computer network, and stores an original state of the one or more tunnels at the router prior to the optimization. By detecting whether path computation element (PCE) failure occurs prior to completion of the optimization, the router may revert to the original state of the one or more tunnels in response to PCE failure prior to completion of the optimization.
摘要:
In one embodiment, a particular field area router (FAR), in a local computer network (e.g., a mesh network) having a plurality of FARs, advertises a common subnet prefix assigned to the local computer network into a global computer network. Each of the plurality of FARs of the local computer network is configured to accept any traffic destined to the local computer network, and a tunnel overlay is built among the plurality of FARs. Upon receiving a packet at the particular FAR destined to a particular device in the local computer network, and in response to the particular FAR not having a host route to the particular device, it forwards the packet on the tunnel overlay to another of the plurality of FARs of the local computer network.