Abstract:
A method and apparatus for handoff of a wireless client from a first network device to a second network device in a wired network are disclosed. In one embodiment, the method includes receiving data from a new wireless client at the second network device and transmitting a request for a route update for the new wireless client to the wired network. Prior to network convergence for the route update, data traffic for the new wireless client is received from the first network device and forwarded to the new wireless client. Context information for the new wireless client is transmitted from the second network device to other network devices in a proximity group of the second network device.
Abstract:
In one embodiment, a method includes receiving a packet from a source wireless device at a second switch, the source wireless device previously associated with a first switch and roamed to and associated with the second switch, wherein a point of presence for the source wireless device is maintained at the first switch, inserting into the packet a direction indicator, and forwarding the packet from the second switch to the first switch, the direction indicator identifying the packet as being transmitted towards the point of presence for the source wireless device to prevent a forwarding loop. An apparatus is also disclosed.
Abstract:
In one embodiment, a method includes receiving a communication from an endpoint device at a network access device located within a data path between the endpoint device and a network, identifying a network admission control policy for the endpoint device, enforcing at the network access device, the network admission control policy for traffic received from the endpoint device, and forwarding at the network access device, traffic from the endpoint device to the network in accordance with the network admission control policy. An apparatus is also disclosed.
Abstract:
In one embodiment, a subnet-scoped multicast packet is received on an interface of a forwarding device that is connected to a host device of a subnet of a forwarding domain. The received subnet-scoped multicast packet is transmitted from one or more other interfaces of the forwarding device that are connected to one or more other host devices of the subnet. The received subnet-scoped multicast packet is also encapsulated with an additional header. The encapsulated subnet-scoped multicast packet is forwarded from the forwarding device to an intermediate router which routes the encapsulated subnet-scoped multicast packet to one or more other forwarding devices configured to decapsulate the encapsulated subnet-scoped multicast packet and transmit the decapsulated subnet-scoped multicast packet to one or more connected host devices of an additional portion of the subnet.
Abstract:
In one embodiment, receiving a data packet in a data forwarding domain, encapsulating a header to the received data packet, and routing the encapsulated data packet in the data forwarding domain over a distribution tree are provided.
Abstract:
Techniques are provided to enable support of roaming wireless devices in a network such that the wireless devices can keep their Internet Protocol (IP) addresses as they roam across mobility sub-domains. Traffic for a wireless device that roams is tunneled back to the access switch that serves the IP subnet which includes an IP address for the wireless device. Traffic is tunneled back to that access switch for the wireless device when the wireless device roams to another access switch which does not serve the IP subnet for the wireless device in the same mobility sub-domain and when the wireless device roams to a different mobility sub-domain, in which case the traffic is tunneled between tunneling endpoints in the respective mobility sub-domains.
Abstract:
Method and system for providing dynamic configuration of network elements using hierarchical inheritance including monitoring a data network, detecting a change associated with a configuration of the data network, identifying one or more member groups affected by the detected change, and modifying the network configuration for the one or more member groups in the data network, is disclosed.
Abstract:
Methods and articles of manufacture relating to server load balancing are disclosed. In one aspect, the method includes load balancing a plurality of network packets among a plurality of servers using a minimally disruptive hash table having a plurality of hash table buckets by identifying a plurality of elements, each element corresponding to at least one of the plurality of servers, inserting at least two of the identified plurality of elements into the minimally disruptive hash table so that at least some of the hash table buckets each include one of the plurality of elements, receiving one of the plurality of network packets, determining a hash table index for the received network packet using a hash function, identifying an element stored in a hash table bucket corresponding to the hash table index, and transmitting the received network packet to a server corresponding to the identified element.
Abstract:
In one embodiment, a method includes receiving a communication from an endpoint device at a network access device located within a data path between the endpoint device and a network, identifying a network admission control policy for the endpoint device, enforcing at the network access device, the network admission control policy for traffic received from the endpoint device, and forwarding at the network access device, traffic from the endpoint device to the network in accordance with the network admission control policy. An apparatus is also disclosed.
Abstract:
In one embodiment, a method includes receiving a packet from a source wireless device at a second switch, the source wireless device previously associated with a first switch and roamed to and associated with the second switch, wherein a point of presence for the source wireless device is maintained at the first switch, inserting into the packet a direction indicator, and forwarding the packet from the second switch to the first switch, the direction indicator identifying the packet as being transmitted towards the point of presence for the source wireless device to prevent a forwarding loop. An apparatus is also disclosed.