摘要:
The present invention discloses a cycle-count-accurate (CCA) processor modeling, which can achieve high simulation speeds while maintaining timing accuracy of the system simulation. The CCA processor modeling includes a pipeline subsystem model and a cache subsystem model with accurate cycle with accurate cycle count information and guarantees accurate timing and functional behaviors on processor interface. The CCA processor modeling further includes a branch predictor and a bus interface (BIF) to predict the branch of pipeline execution behavior (PEB) and to simulate the data accesses between the processor and the external components via an external bus, respectively. The experimental results show that the CCA processor modeling performs 50 times faster than the corresponding Cycle-accurate (CA) model while providing the same cycle count information as the target RTL model.
摘要:
The present invention discloses a system for generating a software TLM model, comprising a processing unit; a compiler coupled to the processing unit to generate target binary codes of a target software; a decompiler coupled to the processing unit to decompile the target binary codes into high level codes, for example C or C++ codes, to generate a functional model of the target software, wherein the functional model includes a plurality of basic blocks; an execution time calculating module coupled to the processing unit to calculate overall execution time of the plurality of the basic blocks of the functional model; a sync point identifying module coupled to the processing unit to identify sync points of the software transaction-level modeling model; and a time annotating module coupled to the processing unit to annotate the overall execution time of the basic blocks and the sync points into the functional model to obtain the software transaction-level modeling model.
摘要:
The present invention discloses a shared-variable-based (SVB) approach for fast and accurate multi-core cache coherence simulation. While the intuitive, conventional approach, synchronizing at either every cycle or memory access, gives accurate simulation results, it has poor performance due to huge simulation overloads. In the present invention, timing synchronization is only needed before shared variable accesses in order to maintain accuracy while improving the efficiency in the proposed shared-variable-based approach.
摘要:
In the present disclosure, the DOM approach for the simulation of OS preemptive scheduling has presented and demonstrated. By maintaining the data-dependency between the software tasks, and guaranteeing the order of shared variable accesses, it can accurately simulate the preemption effect. Moreover, the proposed DOM OS model is implemented to enable preemptive scheduling in SystemC.