摘要:
A liquid crystal display device and a forming method of the electrode plate are disclosed. The forming method of the electrode plate includes providing one or more bottom plane electrodes, one or more conductive layers and a dielectric layer, floating the bottom plane electrodes, electrically connecting the conductive layers and an electrode of a thin film transistor, positioning the dielectric layer between the bottom plane electrodes and the conductive layers, utilizing the conductive layers, the dielectric layer and the bottom plane electrodes to form a coupling capacitor, and adjusting the capacitance of the coupling capacitor to control the voltage on the bottom plane electrodes. Therefore, the liquid crystal display device makes every sub-pixel have a predetermined voltage-transmittance characteristic curve by controlling the voltage on the bottom plane electrodes.
摘要:
A pixel structure of a liquid crystal display (LCD) panel including an upper substrate, a lower substrate, an LC layer, and a common electrode layer is provided. The LC layer is interposed between the upper substrate and the lower substrate. The common electrode layer is formed on a lower surface of the upper substrate and has at least a separating structure to divide the common electrode layer into several zones including a first zone and a second zone applied with different common voltage levels within a pixel structure.
摘要:
The disclosed is a liquid crystal display panel having alignment protrusions with an appropriate optical density (OD) of about 0.3/μm to 3/μm, and preferably of about 0.8/μm to 1.3/μm. The invention solves problems such as light leakage in dark conditions caused by transparent alignment protrusions and mismatch caused by black alignment protrusions overlapping the alignment marks.
摘要:
The disclosed is a liquid crystal display panel having alignment protrusions with an appropriate optical density (OD) of about 0.3/μm to 3/μm, and preferably of about 0.8/μm to 1.3/μm. The invention solves problems such as light leakage in dark conditions caused by transparent alignment protrusions and mismatch caused by black alignment protrusions overlapping the alignment marks.
摘要:
An array substrate capable for a liquid crystal display (LCD). A pixel electrode is disposed in a pixel region of a substrate, which comprises at least one slit. A storage capacitor is disposed between the substrate and the pixel electrode, which comprises a bottom electrode, a capacitor dielectric layer, and a top electrode. The bottom electrode is disposed in the pixel region, creating an overlap region with the slit. The capacitor dielectric layer and the top electrode are successively disposed on the bottom electrode, in which the top electrode comprises at least one recess region to partially expose the overlap region.
摘要:
A liquid crystal display (LCD) panel using a slanted electric field to control the inclination direction of liquid crystal (LC) molecules and a method of fabricating the same are disclosed. The asymmetrical bumps made of material with high dielectric constant are formed on the lower substrate, thereby improving the displaying quality of the LCD panel. After a potential difference is applied to the substrates of the LCD, a slanted electric field is generated due to the formation of asymmetrical bumps, so as to control the inclination direction of LC molecules. Also, the electrode layer could be formed over the asymmetric bumps, or formed between the asymmetric bumps and the bottom substrate.
摘要:
An array substrate capable for a liquid crystal display (LCD). A pixel electrode is disposed in a pixel region of a substrate, which comprises at least one slit. A storage capacitor is disposed between the substrate and the pixel electrode, which comprises a bottom electrode, a capacitor dielectric layer, and a top electrode. The bottom electrode is disposed in the pixel region, creating an overlap region with the slit. The capacitor dielectric layer and the top electrode are successively disposed on the bottom electrode, in which the top electrode comprises at least one recess region to partially expose the overlap region.
摘要:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
摘要:
A switchable two and three dimensional display (2D/3D display) suitable for being viewed by a user is provided. The 2D/3D display includes a liquid crystal display (LCD) panel and a switchable barrier. The LCD panel has a display area, a non-display area surrounding the display area, and a first black matrix extending from the display area to the non-display area. The first black matrix has a number of openings arranged in array and merely distributed within the display area. The switchable barrier has a 3D image control area, a non-display area surrounding the 3D image control area, and a second black matrix merely disposed within the non-display area. The second black matrix surrounds the 3D image control area. An area occupied by the 3D image control area is different from an area occupied by the display area.
摘要:
A switchable two and three dimensional display (2D/3D display) suitable for being viewed by a user is provided. The 2D/3D display includes a liquid crystal display (LCD) panel and a switchable barrier. The LCD panel has a display area, a non-display area surrounding the display area, and a first black matrix extending from the display area to the non-display area. The first black matrix has a number of openings arranged in array and merely distributed within the display area. The switchable barrier has a 3D image control area, a non-display area surrounding the 3D image control area, and a second black matrix merely disposed within the non-display area. The second black matrix surrounds the 3D image control area. An area occupied by the 3D image control area is different from an area occupied by the display area.