Abstract:
In one embodiment, this disclosure describes a frequency synthesizer for use in a wireless communication device, or similar device that requires precision frequency synthesis but small amounts of noise. In particular, the frequency synthesizer may include a phase locked loop (PLL) and an integrated voltage controlled oscillator (VCO). The frequency synthesizer may implement one or more amplitude calibration techniques prior to enabling the PLL. For example, an amplitude calibration unit may be used to selectively activate switched unit current sources within a tail current source of the VCO. In this manner, the amplitude the signal generated by the oscillator can be adjusted without requiring closed-loop amplitude monitoring or control.
Abstract:
Exemplary embodiments are directed to energy storage device security. An energy storage device may include at least one energy storage cell and a controller. The controller may be configured to request device identification data from an electronic device coupled to the energy storage device and compare the device identification data to device identification data stored in the energy storage device. The controller may be further configured to enable energy to be conveyed from the at least one energy storage cell to the electronic device if the device identification matches the stored device identification data.
Abstract:
Exemplary embodiments are directed to energy storage device security. An energy storage device may include at least one energy storage cell and a controller. The controller may be configured to request device identification data from an electronic device coupled to the energy storage device and compare the device identification data to device identification data stored in the energy storage device. The controller may be further configured to enable energy to be conveyed from the at least one energy storage cell to the electronic device if the device identification matches the stored device identification data.
Abstract:
A phase locked loop (PLL) device is configurable in an analog phase locked loop and a hybrid analog-digital phase locked loop. In an analog mode, at least a phase detector, an analog loop filter, and a voltage controlled oscillator (VCO), are connected to form an analog loop. In a digital mode, at least the phase detector, the voltage controlled oscillator (VCO), a time to digital converter (TDC), a digital loop filter and a digital to analog converter (DAC) are connected to form the hybrid digital-analog loop.
Abstract:
Exemplary embodiments are directed to selective wireless power transfer. A method may include transferring wireless power to at least one electronic device while varying at least one parameter of the wireless power transfer according to a wireless power transfer scenario.
Abstract:
Exemplary embodiments are directed to wireless power. A method may comprise receiving wireless power with a receiver and charging an accumulator with energy from the received wireless power. The method may further include conveying energy from the accumulator to an energy storage device upon a charging level of the accumulator reaching a threshold level.
Abstract:
Methods and apparatus are presented for performing coarse frequency tuning in a voltage controlled oscillator. The methods and apparatus are directed towards the use of a new voltage controlled oscillator comprising both a binary coding module and a thermometer coding module. The combination of the binary coding module and the thermometer coding module control a capacitance corresponding to a resonant tank which is used to coarse tune the frequency of the voltage controlled oscillator.