Abstract:
The invention relates to a resonator circuit, the resonator circuit comprising a transformer comprising a primary winding and a secondary winding, wherein the primary winding is inductively coupled with the secondary winding, a primary capacitor being connected to the primary winding, the primary capacitor and the primary winding forming a primary circuit, and a secondary capacitor being connected to the secondary winding, the secondary capacitor and the secondary winding forming a secondary circuit, wherein the resonator circuit has a common mode resonance frequency at an excitation of the primary circuit in a common mode, wherein the resonator circuit has a differential mode resonance frequency at an excitation of the primary circuit in a differential mode, and wherein the common mode resonance frequency is different from the differential mode resonance frequency.
Abstract:
Methods and devices providing Positive Logic biasing schemes for use in a digitally tuning capacitor in an integrated circuit device are described. The described methods can be used in integrated circuits with stringent requirements in terms of switching time, power handling, noise sensitivity and power consumption. The described devices include DC blocking capacitors arranged in series with stacked switches coupled to RF nodes. The stacked FET switches receive non-negative supply voltages through their drains and gates during the ON and OFF states to adjust the capacitance between the two nodes.
Abstract:
An oscillator circuit has a reconfigurable oscillator amplifier. The reconfigurable oscillator amplifier is used to be coupled to a resonant circuit in parallel. The reconfigurable oscillator amplifier supports different circuit configurations for different operation modes, respectively. The reconfigurable oscillator amplifier has at least one circuit component shared by the different circuit configurations. The reconfigurable oscillator amplifier employs one of the different circuit configurations under one of the different operation modes.
Abstract:
Method and systems are provided for voltage-controlling and tuning of oscillators. An oscillator may comprise comprises an oscillator core configured for contributing gain to oscillations generated in the oscillator and a frequency tuning network connected between the oscillator core and a signal source that provides an input signal for creating the oscillations in the oscillator. The frequency tuning network may be configured for tuning frequency of the oscillations, to inhibit amplifying a first capacitance from the oscillator core and to amplify a second capacitance from the frequency tuning network. The frequency of oscillations may be tuned by varying a capacitance, and isolating one or more of noise sources or parasitic capacitances from the tuning network.
Abstract:
A circuit includes at least two LC voltage controlled oscillators (LCVCOs). Each LCVCO includes a switch to selectively turn on or off the LCVCO. One selected LCVCO of the at least two LCVCOs is configured to provide a differential LCVCO output. A converter coupled to the at least two LCVCOs is configured to receive the differential LCVCO output and provide an output signal with a full voltage swing.
Abstract:
A wide tuning range oscillator system uses multiple active cores with cross-coupled transistors and multiple tapped inductors having windings that can be connected to circuit nodes. These active cores are connected to a pair of symmetric tapping points and are switched ON/OFF by biasing elements. Biasing schemes and the topology of the individual cross-coupled cores may be different from each other. The tapping points are symmetrically arranged around the center point of the inductor. One or more of the active cores may be enabled for tuning the center frequency of the oscillator system.
Abstract:
A semiconductor integrated circuit device having a function to perform oscillation in combination with a crystal oscillator, includes: a first impedance element including a first external terminal coupled to one terminal of the crystal oscillator, a second external terminal coupled to the other terminal of the crystal oscillator, and first and second terminals coupled to the first and second external terminals when the oscillation is performed; a first variable capacitance circuit coupled to the first terminal of the feedback impedance element, and a configuration circuit for setting a capacitance value of the first variable capacitance circuit. A measurement signal is supplied to the second terminal of the feedback impedance element, and in response to this, the capacitance value of the first variable capacitance circuit is set by the configuration circuit based on the delay time of an observation signal generated at the first terminal with respect to the measurement signal.
Abstract:
Apparatus and methods are disclosed related to an oscillator that includes a sustaining amplifier. One such apparatus includes a resonant circuit configured to operate at a resonant frequency, a sustaining amplifier, and a passive impedance network. The resonant circuit can have a first terminal and a second terminal. The sustaining amplifier can include at least a first switch configured to drive the first terminal of the resonant circuit in response to an input at a first control terminal of the first switch. The passive impedance network can be configured to pass a bias to the first control terminal, such as a gate of a field effect transistor, of the first switch. The passive impedance network can be electrically coupled to the second terminal of the resonant circuit and can include at least one inductor.
Abstract:
A tunable inductor circuit is disclosed. The tunable inductor circuit includes a first inductor. The tunable inductor circuit also includes a second inductor in parallel with the first inductor. The tunable inductor circuit also includes a switch coupled to the second inductor. A resistance of the switch is added in parallel to the first inductor based on operation of the switch.
Abstract:
An integrated circuit device has an LC tank circuit for frequency determination, and a switched capacitor circuit for tuning the resonant frequency of the LC tank. The switched capacitor circuit has plural sets of parallel branches, each set comprising a first branch and a second branch, the first and second branches each connecting between a first node and a second node, each branch containing a respective capacitor in series with a switch, the switched capacitor circuit being configured such that, in use, the switch of the first branch is on when the switch of the second branch is off and vice versa.