摘要:
A transmitter transmits data having a set of two or more priorities on subcarriers using orthogonal frequency division multiplexing (OFDM) symbols. The transmitter includes a media access (MAC) layer, wherein the MAC layer further includes a queue for storing data at each priority, a rate control block connected to each queue, and a physical (PHY) layer. The PHY layer further includes a channel coder for each priority, wherein each channel coder is connected to the corresponding queue to receive data, and to the rate control block to send coding information.
摘要:
An exemplary method is disclosed to accurately estimate the center frequency of a narrow-band interference (NBI). The exemplary method uses multi-stage autocorrelation-function (ACF) to estimate an NBI frequency. The exemplary method allows an accurate estimation of the center frequency of NBI in an Ultra-Wideband system. A narrow band interference (NBI) estimator based on such a method allows a low complexity hardware implementation. The exemplary method estimates the frequency in multiple stages. Each stage performs an ACF operation on the received signals. The first stage gives an initial estimation and the following stages refine the estimation. The results of all stages are combined to produce the final estimation. An apparatus based on such a multi-stage narrow band interference frequency detector is also disclosed to improve the accuracy by combining various filters with the detector.
摘要:
Synchronization methods and systems for communications over a multi-band system are presented. A synchronization technique for communications over a multi-band system includes receiving a packet of preamble symbols respectively transmitted over a sequence of frequency sub-bands according to one of a plurality of frequency hopping patterns, wherein the plurality of frequency hopping patterns are partitioned into a plurality of disjoint groups, each group having a different associated periodicity; computing, in parallel, respective autocorrelation values of the packet received in a selected frequency sub-band at a plurality of symbol delays; and selecting one of the plurality of groups of frequency hopping patterns based on the autocorrelation values at the plurality of symbol delays.
摘要:
A method and system for equalizing a signal transmitted via a channel of a communications system stores an input signal received via the channel in a main buffer. A training signal portion of the received input signal is stored in a circular buffer as a circulating training signal. A mean square error of the training signal is minimized while estimating the transmitted signal, until the mean square error is less than a predetermine threshold. In this case, the input signal received via the channel is equalized directly to make decisions on symbols of the signal transmitted via the channel. During an initial stage of training, the mean square error is determined directly from the training signal, during subsequent stages of training the circulating training signal is used.
摘要:
A method equalizes a received signal in an optical communications system. The received signal is passed through an analog delay line where it is tapped to generate a set of delayed copies of the received signal. In a set of analog multipliers, each delayed copy of the received signal is multiplied by a corresponding weight to generate a set of weighted signals that are then summed to produce an output signal. The output signal is thresholded and subtracted from the output signal to produce an error signal, which is periodically sampled. In a digital weight updating circuit, the weights are produced from digitized versions of the sampled error signal and samples of the delayed copies of the received signal.
摘要:
An ad-hoc wireless communication network includes multiple nodes. Each node maintains a routing table. The routing table is constructed by broadcasting route request packets from a source node. The request packet includes an address of a destination node. Intermediate nodes in the network receiving the request packet, determine power and delay cost associated with the intermediate node participating in the route. If the cost is less than a threshold value, then the intermediate node participates in the routing of packets for other nodes. The intermediate node then sends a reply packet back to the source node. The reply packet includes the intermediate node addresses, as well as the power and delay costs. The source can thus construct the routing table. The source node can select a particular node for transferring application data packets based on either the power cost, the delay cost or both costs.
摘要:
Soft decision decoding of a codeword of a Reed-Muller (RM) code byselecting an optimal decomposition variable i using a likelihood calculation. A code RM(r, m) is expressed as {(u, uv)|uεRM(r, m−1) and vεRM(r−1, m−1)) where uv denotes a component-wise multiplication of u and v, and (u, uv)=(r1, r2). A receive codeword is separated into r1=u and r2=uv based on the optimal decomposition variable, and r2 is decoded according to the optimal decomposition variable, using a RM(r−1, m−1) decoder to obtain a decoded v and a first set of decoded bits. The decoded v is combined with r1 using (r1+r2v)/2, and(r1+r2V)/2 is decoded using a RM(r, m−1) decoder to obtain a decoded u and a second set of decoded bits.
摘要:
A system and method reduce power consumption in a multi-hop wireless communications network. A signal is received from a source node in an intermediate node. The signal includes a request to relay a message to a destination node. The request includes information on power requirements to relay the message either in a relay mode or a regeneration mode. If the available power at the intermediate node exceeds the power requirements, then the request is accepted. Either the relay mode or the regeneration mode is selected, based on criteria for retransmitting the message, and the message is then relayed to the destination node using the selected mode.
摘要:
Soft decision decoding of a codeword of a Reed-Muller (RM) code by selecting an optimal decomposition variable i using a likelihood calculation. A code RM(r, m) is expressed as {(u, uv)|uεRM(r, m−1) and vεRM(r−1, m−1)}, where uv denotes a component-wise multiplication of u and v, and (u, uv)=(r1, r2). A receive codeword is separated into r1=u and r2=uv based on the optimal decomposition variable, and r2 is decoded according to the optimal decomposition variable, using a RM(r−1, m−1) decoder to obtain a decoded v and a first set of decoded bits. The decoded v is combined with r1 using (r1+r2v)/2, and (r1+r2v)/2 is decoded using a RM(r, m−1) decoder to obtain a decoded u and a second set of decoded bits.
摘要:
A wireless network with a star topology includes a first central node, a second central node, wherein the first and second nodes are functionally equivalent. A set of leaf nodes are configured to communicate with either the first central node or the second central node via wireless links, depending whether the central nodes are active or inactive.