Abstract:
Ultrasonic flowmeter for measuring the flowrate of a fluid based on transit times of opposite propagating ultrasonic wave packets, including two ultrasonic transducers arranged at a flow tube for transmitting and receiving the ultrasonic wave packets through a fluid; a control circuit configured for operating the ultrasonic transducers to transmit and receive co-propagating and counter-propagating ultrasonic wave packets, and to determine transit times between transmission and reception of the ultrasonic wave packets; wherein the control circuit is further configured to continuously determine the flowrate of the fluid based on sequential application of separate flow measurement sequences and flow estimation sequences, the flow measurement sequence including transmitting and receiving a co-propagating wave packet and a counter-propagating wave packet, determining a transit time difference between the co-propagating and the counter-propagating wave packets, determining the speed of sound in the fluid, and calculating the flowrate based on the transit time difference and the speed of sound; and the flow estimation sequence including transmitting and receiving a co-propagating wave packet and/or a counter-propagating wave packet, and based on the co-propagating or the counter-propagating wave packet, determining whether a fluid condition of the fluid has changed since the previous flow measurement.
Abstract:
A consumption meter is provided with a conductive feed through for external communication equipment. The meter comprises a housing (104) which forms a closed compartment when an opening of the housing is closed with a cover (106). The compartment includes a communication module (204) and the conductive feed through comprises at least one conductive path (202, 408) from the communication module (204) to an outside part of the meter (102), which outside part is subject to ambient conditions. The path is provided via the opening of the housing and a sealing means (210) in the opening of the housing is used to seal against a first surface (308) of the conductive path when the cover is attached to the housing.
Abstract:
An ultrasound flow meter unit arranged to measure a fluid flow rate is provided, where the unit comprises a circuit board 502 which comprises an electronic circuit, a first ultrasound transducer 506 and a first conducting path 564 electrically connected to first ultrasound transducer and the electronic circuit, wherein the circuit board is a multi-layer circuit board and the first conducting path 564 is arranged at least partially between a first layer 581 and a second layer 582. In a further embodiment, there is provided an upper electrically conducting layer 586 and/or a lower electrically conducting layer 588 which substantially covers, respectively, the upper surface of the first layer 581 and the lower surface of the second layer 582.
Abstract:
The invention relates to an ultrasonic flow meter arranged to measure a flow rate of a liquid, the flow meter comprises a flow tube 2, optionally a measurement insert, and two or more ultrasonic transducers 8 which are arranged in transducer inserts 20 to be inserted into the flow tube through openings in the flow tube. The transducer inserts are formed monolithically with the housing as a part of the bottom of the housing. The transducer inserts are in a mount position inserted through the openings in the flow tube to extend into the flow passage so that the surface 15 of the transducer inserts protrude into the flow passage. In this manner, gas bubbles, such as air bubbles, released from the flowing liquid will not rest in front of the transducer insert irrespectively of the orientation of the flow meter in the pipe installation.
Abstract:
A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc. Such consumer noise level measurement at the consumer site allows collection of noise level data to assist in locating fluid leakages in a fluid supply pipe system.
Abstract:
A consumption meter, e.g. a water or heat meter, for measuring a flow rate of a fluid supplied in a flow tube. First and second ultrasonic transducers are arranged at the flow tube for transmitting and receiving ultrasonic signals transmitted through the fluid and operated by a flow measurement sub-circuit for generating a signal indicative of the flow rate of the fluid. A noise measurement sub-circuit operates a sensor arranged at the flow tube for detection of acoustic signals of the flow tube, and being arranged to generate a signal indicative of a noise level of the flow tube accordingly. This sensor may comprise a separate transducer, or the sensor may be constituted by one or both of the first and second ultrasonic transducers. The consumption meter may communicate data representative of the noise level via a communication module along with data consumed amount of water, heat etc. Such consumer noise level measurement at the consumer site allows collection of noise level data to assist in locating fluid leakages in a fluid supply pipe system.
Abstract:
A consumption meter arranged to measure a flow rate of a fluid comprising: a tube with two transducer holes in a wall of the tube; a meter housing arranged at the tube, comprising two transducer housings and a main housing; first and second ultrasonic transducers arranged in the transducer housings for transmitting and receiving ultrasonic signals propagating through the fluid; a control circuit arranged in the meter housing for operating the first and second ultrasonic transducers to generate a signal according to the flow rate of the fluid. The transducer housing comprises: an internal transducer housing element arranged at an inner surface of the tube and an external transducer housing element arranged at an outer surface of the tube to extend through the transducer hole in the wall of the tube such that the transducer housing is fixated to the tube.
Abstract:
The invention relates to an ultrasonic flow meter arranged to measure a flow rate of a liquid, the flow meter comprises a flow tube 2, optionally a measurement insert, and two or more ultrasonic transducers 8 which are arranged in transducer inserts 20 to be inserted into the flow tube through openings in the flow tube. The transducer inserts are formed monolithically with the housing as a part of the bottom of the housing. The transducer inserts are in a mount position inserted through the openings in the flow tube to extend into the flow passage so that the surface 15 of the transducer inserts protrude into the flow passage. In this manner, gas bubbles, such as air bubbles, released from the flowing liquid will not rest in front of the transducer insert irrespectively of the orientation of the flow meter in the pipe installation.
Abstract:
A consumption meter is provided with a conductive feed through for external communication equipment. The meter comprises a housing (104) which forms a closed compartment when an opening of the housing is closed with a cover (106). The compartment includes a communication module (204) and the conductive feed through comprises at least one conductive path (202, 408) from the communication module (204) to an outside part of the meter (102), which outside part is subject to ambient conditions. The path is provided via the opening of the housing and a sealing means (210) in the opening of the housing is used to seal against a first surface (308) of the conductive path when the cover is attached to the housing.
Abstract:
A consumption meter arranged to measure a flow rate of a fluid, comprising: a tube with for passage of the fluid between an inlet and an outlet, multiple individual flow meters arranged at the tube to measure a sub-flow rate of the fluid, a first control circuit and communication interface arranged for receiving the measured sub-flow rate from each of the multiple flow meters, and being arranged to generate a signal indicative of the flow rate of the fluid according to the received sub-flow rates, each of the multiple individual flow meters comprising: a flow meter housing arranged at the tube; first and second ultrasonic transducers arranged in the flow meter housing for transmitting and receiving ultrasonic signals propagating through the fluid; a second control circuit arranged for operating the first and second ultrasonic transducers, and being arranged to generate the signal indicative of the sub-flow rate of the fluid accordingly; and a communication interface arranged for transmitting the signal indicative of the sub-flow rate to the first control circuit.