Abstract:
The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2) and capable of adjusting ballistic deficit. The detection device (6) comprises a pre-amplifying unit (11) (such as, e.g., a charge-sensitive amplifier), a shaping unit (60) comprising a feedback discharge unit (13, I) (such as, e.g., a feedback resistor or a feedback current source), and a feedback discharge control unit (50) coupled to the feedback discharge unit (13, I). The feedback discharge control unit (50) is adapted to, e.g., adjust a resistance of a feedback resistor (and/or to adjust the current value of the feedback current source) if an electrical pulse generated by the shaping unit (60) does not exceed at least one energy comparison value (X1, X2, . . . , XN). The feedback discharge control unit (50) is adapted to not adjust the parameter of the feedback discharge unit (13, I) if the electrical pulse exceeds the at least one energy comparison value (X1, X2, . . . , XN). By tuning the feedback resistor operating point (or the feedback current source operating point), the ballistic deficit can be adjusted to a predefined expected value.
Abstract:
Data transmission in a multicast fashion in which retransmissions are requested by recipients sending feedback to the one sender. Receiving stations are informed about the feedback of another receiving station. This is done by mirroring the feedback of receiving stations to other receiving stations. Due to this, in case, for example, one of the mirrored feedbacks is a negative acknowledgement message, the other receiving stations are informed that it is no longer necessary to provide their feedback, since a retransmission will be initiated anyway. Advantageously, this may allow reduced interference in the direction of the feedback.
Abstract:
The present invention relates to a detection device (6) for detecting photons emitted by a radiation source (2). The detection device (6) is configured to detect the photons during a first time period. The detection device (6) comprises a sensor (10) having an intermediate direct conversion material for converting photons into electrons and holes, a shaping element (20), and a compensation unit (450, INT, 950). The compensation unit (450, INT, 950) is adapted to provide a compensation signal based on the electrical pulse and on a photoconductive gain of said sensor (10). The core of the invention is to provide circuits to reduce artifacts due to inherent errors with direct conversion detectors in spectral computed tomography by determining a compensation current, by detecting or monitoring a baseline restorer feedback signal, or by ignoring signals above the baseline level.
Abstract:
An imaging system (300) includes a detector array (314) with direct conversion detector pixels that detect radiation traversing an examination region of the imaging system and generate a signal indicative of the detected radiation, a pulse shaper (316) configured to alternatively process the signal indicative of detected radiation generated by the detector array or a set of test pulses having different and known heights that correspond to different and known energy levels and to generate output pulses having heights indicative of the energy of the processed detected radiation or set of test pulses, and a thresholds adjuster (330) configured to analyze the heights of the output pulses corresponding to the set of test pulses in connection with the heights of set of test pulses and a set of predetermined fixed energy thresholds and generate a threshold adjustment signal indicative of a baseline based on a result of the analysis.
Abstract:
An apparatus includes a pulse shaper (120) for receiving signals indicative of detected photons and generating a plurality of pulses therefrom to form a pulse train (200) and a peak detector (150) for sampling the pulse train (200) at an output of the pulse shaper (120). The peak detector (150) includes a circuit (300) for selectively detecting and sampling a maximum (202a, b, c) and a minimum (204a, b) value of the pulse train (200). The maximum (202a, b, c) and minimum (204a, b) values sampled are then converted from analog-to-digital format via an analog-to-digital converter (160).
Abstract:
In radiation-sensitive detector devices, such as direct conversion detectors, charges are drifting within an externally applied electric field towards collecting electrodes (4), which are segmented (e.g. representing a pixel array). At the gaps between segments, electrical field lines can leave the detector, and charges drifting along those field lines can be trapped within the gap. This can be avoided by external electrodes (8) which push electric field lines back into the direct conversion material.
Abstract:
The present invention relates to an x-ray detector comprising a sensor unit (200, 300) for detecting incident x-ray radiation comprising a number of sensor elements (230, 311-314), a counting channel (240) per sensor element for obtaining a count signal by counting photons or charge pulses generated in response to the incident x-ray radiation since a beginning of a measurement interval, an integrating channel (250) per sensor element for obtaining an integration signal representing the total energy of radiation detected since the beginning of the measurement interval, and a processing unit (260) for estimating, from the integration signals of the sensor elements (321), count signals of sensor elements (311, 312) whose counting channel has been saturated during the measurement interval.
Abstract:
Disclosed herein is a radiological instrument (100, 200, 300, 400, 600, 700, 800) comprising at least one pulse shaper circuit (102) configured for a direct conversion radiation detector (108). The at least one pulse shaper circuit comprises an amplifier (110). The pulse shaper further comprises a feedback circuit (118) connected in parallel with the amplifier; a first switching unit (120) connected in series with the feedback circuit; a second switching unit (122) connected in parallel with the amplifier; a discriminator circuit (124) that provides a discriminator signal (128) when the output exceeds a controllable signal threshold; and a control unit (124) for controlling the first switching unit and the second switching unit, wherein the control unit controls the second switching unit such that a substantial part of the signal is integrated, when the second switching unit is closed.
Abstract:
The invention relates to a pulse shaper (18). The pulse shaper (18) comprises an integrator (19) for generating a pulse having a peak amplitude indicative of the energy of a detected photon, a feedback resistor (22), switchable discharge circuitry (23) for discharging the integrator (19), and a peak detector (24) for detecting the peak of the pulse. The pulse shaper is adapted to start the discharge of the integrator by the switchable discharge circuitry based on the detection of the peak and to connect the feedback resistor in parallel to the integrator during a period of the pulse generation and to disconnect the feedback resistor during another period of the pulse generation. The pulse shaper can be such that the generation of the pulse is substantially unhindered by any noticeable concurrent discharging mechanism while, at the same time, the occurrence of energy pedestals can be efficiently avoided.
Abstract:
An imaging system (100) includes a detector module (114). The detector module includes a block (300) of a plurality of direct conversion photon counting detector pixels (122) and corresponding electronics (124, 604, 606, 132, 134 or 124, 128, 130, 134, 802) with hardware for both high energy resolution imaging mode and high X-ray flux imaging mode connected with the block of the plurality of direct conversion photon counting detector pixels. A method includes identifying a scanning mode for a selected imaging protocol, wherein the scanning modes includes one of a higher energy resolution mode and a higher X-ray flux mode, configuring a detector module, which is configurable for both the higher energy resolution mode and the higher X-ray flux mode, based on the identified scanning mode, performing the scan with the detector module configured for the mode of the selected imaging protocol, and processing scan data from the scan, generating volumetric image data.