Imaging view steering using model-based segmentation

    公开(公告)号:US11540718B2

    公开(公告)日:2023-01-03

    申请号:US15103053

    申请日:2014-12-05

    摘要: An imaging steering apparatus includes sensors and an imaging processor configured for: acquiring, via multiple ones of the sensors and from a current position (322), and current orientation (324), an image of an object of interest; based on a model, segmenting the acquired image; and determining, based on a result of the segmenting, a target position (318), and target orientation (320), with the target position and/or target orientation differing correspondingly from the current position and/or current orientation. An electronic steering parameter effective toward improving the current field of view may be computed, and a user may be provided instructional feedback (144) in navigating an imaging probe toward the improving. A robot can be configured for, automatically and without need for user intervention, imparting force (142) to the probe to move it responsive to the determination.

    Ultrasound imaging method
    12.
    发明授权

    公开(公告)号:US11406351B2

    公开(公告)日:2022-08-09

    申请号:US16619216

    申请日:2018-05-30

    摘要: Provided is a method (200) for generating a combined anatomical model of a heart. The method comprises receiving (220) a non-contrast agent-enhanced ultrasound image of a left ventricular region of the heart and receiving (240) a contrast agent-enhanced ultrasound image of the left ventricular region of the heart. Image registration (260) is performed on the respective non-contrast agent-enhanced and contrast agent-enhanced ultrasound images, such that the respective images are aligned. Combined segmentation (270) of the aligned non-contrast agent-enhanced and contrast agent-enhanced ultrasound images is then carried out to generate the combined anatomical model. The combined segmentation (270) uses features of both of the aligned non-contrast agent-enhanced and contrast agent-enhanced ultrasound images as target points. Further provided is a processor arrangement adapted to implement the method and an ultrasound system comprising the processor arrangement. A computer program product comprising computer program code means adapted to implement the method is also provided.

    MEDICAL IMAGE PROCESSING DEVICE AND METHOD
    15.
    发明申请

    公开(公告)号:US20180235577A1

    公开(公告)日:2018-08-23

    申请号:US15314327

    申请日:2015-06-09

    IPC分类号: A61B8/08 G06T7/149

    摘要: The present invention relates to a medical image processing device (10), comprising:—a receiving unit (60) for receiving a first and a second medical image (72, 74) of an anatomical object of interest (84), wherein each of the first and the second medical images (72, 74) comprises a different field of view of the anatomical object of interest (84), and wherein the first medical image and the second medical image (72, 74) show a same or similar anatomical state of the anatomical object of interest (84);—a registration unit (64) that is configured to determine a transformation from an image space of the second medical image (74) to an image space of the first medical image (72);—a transformation unit (66) that is configured to transform the second medical image (74) into the image space of the first medical image (72) based on said transformation in order to receive a transformed second medical image (74′); and—a segmentation unit (68) that is configured to perform an overall segmentation that makes use of both the first medical image (72) and the transformed second medical image (74′) without fusing the first medical image (72) and the transformed second medical image (74′), wherein one and the same segmentation model (92) is simultaneously adapted to both the first medical image (72) and the transformed second medical image (74′) by identifying a first set of feature points (80) of the anatomical object of interest (84) within the first medical image (72), by identifying a second set of feature points (82) of the anatomical object of interest (84) within the transformed second medical image (74′), and by adapting the segmentation model (92) to both the first and the second set of feature points (80, 82).

    3D image compounding for ultrasound fetal imaging

    公开(公告)号:US11413006B2

    公开(公告)日:2022-08-16

    申请号:US16093175

    申请日:2017-04-13

    摘要: The present invention provides an improved ultrasound imaging system arranged to evaluate a set of acquired 3D image data in order to provide a compounded 3D image of a fetus irrespective of its position and movement. This is achieved by providing an ultrasound imaging system comprising: an ultrasound probe having an ultrasound transducer array operable to acquire at different look directions a plurality of three dimensional (3D) ultrasound image frames of a volumetric region comprising a fetus; a compound image memory for storing the acquired plurality of the 3D ultrasound image frames and an articulated fetal model with a common fetal structure; an ultrasound image processor responsive to the plurality of 3D ultrasound image frames, said processor comprising a fetal segmentation unit arranged to segment each 3D image frame based on the articulated fetal model thereby providing a plurality of spatially related 3D images of the volumetric region; and an image quality analyzer coupled to the segmentation unit and arranged to determine, based on the articulated fetal model, an overall confidence value of the plurality of the 3D images, said image quality analyzer is further arranged to compare the overall confidence value with an image compounding threshold.

    Anatomical measurements from ultrasound data

    公开(公告)号:US11100665B2

    公开(公告)日:2021-08-24

    申请号:US16493386

    申请日:2018-03-05

    摘要: The application discloses a computer-implemented method (100) of providing a model for estimating an anatomical body measurement value from at least one 2-D ultrasound image including a contour of the anatomical body, the method comprising providing (110) a set of 3-D ultrasound images of the anatomical body; and, for each of said 3-D images, determining (120) a ground truth value of the anatomical body measurement; generating (130) a set of 2-D ultrasound image planes each including a contour of the anatomical body, and for each of the 2-D ultrasound image planes, extrapolating (140) a value of the anatomical body measurement from at least one of an outline contour measurement and a cross-sectional measurement of the anatomical body in the 2-D ultrasound image plane; and generating (150) said model by training a machine-learning algorithm to generate an estimator function of the anatomical body measurement value from at least one of a determined outline contour measurement and a determined cross-sectional measurement of a contour of the anatomical body within a 2-D ultrasound image using the obtained ground truth values, extrapolated values and at least one of the outline contour measurements and the cross-sectional measurements as inputs of said machine-learning algorithm. A computer-implemented method of deploying such a model, a computer program product, an ultrasound image processing apparatus and an ultrasound imaging system adapted to implement such methods are also disclosed.

    Medical image processing device and method

    公开(公告)号:US10993700B2

    公开(公告)日:2021-05-04

    申请号:US15314327

    申请日:2015-06-09

    摘要: The present invention relates to a medical image processing device (10), comprising: —a receiving unit (60) for receiving a first and a second medical image (72, 74) of an anatomical object of interest (84), wherein each of the first and the second medical images (72, 74) comprises a different field of view of the anatomical object of interest (84), and wherein the first medical image and the second medical image (72, 74) show a same or similar anatomical state of the anatomical object of interest (84); —a registration unit (64) that is configured to determine a transformation from an image space of the second medical image (74) to an image space of the first medical image (72); —a transformation unit (66) that is configured to transform the second medical image (74) into the image space of the first medical image (72) based on said transformation in order to receive a transformed second medical image (74′); and —a segmentation unit (68) that is configured to perform an overall segmentation that makes use of both the first medical image (72) and the transformed second medical image (74′) without fusing the first medical image (72) and the transformed second medical image (74′), wherein one and the same segmentation model (92) is simultaneously adapted to both the first medical image (72) and the transformed second medical image (74′) by identifying a first set of feature points (80) of the anatomical object of interest (84) within the first medical image (72), by identifying a second set of feature points (82) of the anatomical object of interest (84) within the transformed second medical image (74′), and by adapting the segmentation model (92) to both the first and the second set of feature points (80, 82).