Single-modality-based visual distinguishing of medical intervention device from tissue

    公开(公告)号:US10462382B2

    公开(公告)日:2019-10-29

    申请号:US15534038

    申请日:2015-12-01

    Abstract: Depiction, within a single imaging modality, of an intervention device and body tissue surrounding the device, is improved by interrogating a subject that includes the intervention device and the tissue. An image is created using, for a parameter, a value, of the parameter (160), better suited to one or the other of a device region depicting the intervention device and a tissue region depicting the tissue. The value is used to yield respectively either a first image (152) or a second image (154). Respective presets may correspondingly have different values for the parameter. From jointly the first image and the second image which are both of the single modality, a combination is formed that is an image of the intervention device depicted as surrounded by the tissue. The combinations may be formed dynamically and ongoingly. An apparatus for the improved depiction may be configured for the use of the parameter in a stage prior to image processing conducted on a scan-converted image (146) if such image processing is employed.

    SYNCHRONIZED PHASED ARRAY DATA ACQUISITION FROM MULTIPLE ACOUSTIC WINDOWS

    公开(公告)号:US20170168148A1

    公开(公告)日:2017-06-15

    申请号:US15314521

    申请日:2015-05-27

    Abstract: In some embodiments, ultrasound receive beamforming yields beamformed samples, based upon which spatially intermediate pixels (232, 242, 244) are dynamically reconstructed. The samples have been correspondingly derived from acquisition through respectively different acoustic windows (218, 220). The reconstructing is further based on temporal weighting of the samples. In some embodiments, the sampling is via synchronized ultrasound phased-array data acquisition from a pair of side-by-side, spaced apart (211) acoustic windows respectively facing opposite sides of a central region (244) to be imaged. In particular, the pair is used interleavingly to dynamically scan jointly in a single lateral direction in imaging the region. The acquisition in the scan is, along a synchronization line (222) extending laterally across the region, monotonically progressive in that direction. Rotational scans respectively from the window pair are synchronizable into a composite scan of a moving object. The synchronization line (222) can be defined by the focuses of the transmits. The progression may strictly increase.

    Rapid synthetic focus ultrasonic imaging with large linear arrays

    公开(公告)号:US11199625B2

    公开(公告)日:2021-12-14

    申请号:US16309601

    申请日:2017-06-12

    Abstract: An ultrasonic diagnostic imaging system and method translates an aperture across an array transducer which is less that the size of the array. At each aperture location a transmit beam is focused above, or alternatively below, the array and a region of interest being scanned from the aperture location, resulting in broad insonification of the region of interest. At the lateral ends of the array the aperture is no longer translated but the focal point of the transmit beam is translated from the same aperture position, preferably with tilting of the beam direction. Multiple receive beams are processed in response to each transmit event and the overlapping receive beams and echo locations are spatially combined to produce synthetic transmit focusing over the center of the image field and noise reduction by spatial compounding at the lateral ends of the image field.

Patent Agency Ranking