Abstract:
A system (CDD) and related method for facilitating an iterative reconstruction operation. In iterative reconstruction, imagery in image domain is reconstructed in plural steps from measured projection data in projection domain. The system and methods use a trained machine learning module (MLM). The system receives input correction data generated in the iterative reconstruction operation. The system predicts, based on the input correction data, output correction data. The output correction data is provided for facilitating correcting a current image, as reconstructed in a given step, into a new image.
Abstract:
The invention relates to an active marker device (100) for being introduced into a human tissue and for tracking a region of interest of a human body. The active marker device comprises a light source (101) for emitting light such that the emitted light can be detected by an optical sensor. In this way, the active marker device and/or the region of interest can be tracked by a tracking system comprising the optical sensor. The active marker device (100) further comprises a switch (102) for turning the light source on and off and for operating the light source in a pulsed mode.
Abstract:
The invention relates to an X-ray apparatus (10) and a method (64) for a depth localization of a catheter (12) within an object of interest (22), arranged at an object receiving space (14) of the X-ray imaging apparatus. The X-ray imaging apparatus comprises an X-ray source (16) and an X-ray detector (20). Between the X-ray source and the X-ray detector, at least one interferometer (24) formed by a phase grating is arranged. The X-ray detector is configured to detect X-ray radiation, which has been influenced by the phase grating and the object of interest and the catheter, which may also be arranged at the object receiving space and/or the object of interest. The X-ray detector is configured to provide a detector signal s. A signal component of the detector signal relates to a phase-contrast detector signal component, which may be calculated on the basis of the detector signal and may represent a visibility loss. It has been found, that a repective visibility loss signal component of the detector signal depends on a distance between the catheter and the phase grating. Accordingly, depth information for the catheter may be calculated on the basis of the visibility loss signal component of the detector signal. Correspondingly, a three-dimensional position of the catheter at the object receiving space may be calculated. It is to be noted, that the catheter may just be one example of an interventional device, which may be arranged at the object receiving space. As an effect, a three-dimensional tracking of the interventional device, in particular of the catheter, may be enabled from the X-ray detector signal.
Abstract:
The invention relates to an active marker device (100) for being introduced into a human tissue and for tracking a region of interest of a human body. The active marker device comprises a light source (101) for emitting light such that the emitted light can be detected by an optical sensor. In this way, the active marker device and/or the region of interest can be tracked by a tracking system comprising the optical sensor. The active marker device (100) further comprises a switch (102) for turning the light source on and off and for operating the light source in a pulsed mode.
Abstract:
An interventional X-ray system (10), comprises a processing unit (30), a table (20) for receiving a patient (44), an X-ray image acquisition device (12) having an X-ray source (16) and an X-ray detector (18) and at least one optical camera (46) adapted for acquiring optical images of a patient (44) situated on the table (20) and for providing image data to the processing unit (30). The processing unit (30) is adapted for segmenting an outline (64) of a patient from an existing three-dimensional model, for receiving acquired images from the at least one camera (46) for determining an optical outline (66) of the patient, for registering the optical outline (66) to the outline (64) obtained in the segmentation and for determining a translation vector (48) representing a required movement of the table for coinciding a center (42) of the anatomy of interest given in the three-dimensional model with the iso-center (38) of a rotational X-ray scan that will be performed. By this process, no X-ray exposure or injection of contrast agent is required.
Abstract:
An medical viewing system (10) adapted for acquiring a first set of X-ray fluoroscopy images of an ultrasonic probe (40) of an echocardiography imaging device at two different viewing angles, wherein a processing unit (30) of the system is adapted for registering live echocardiography and live X-ray images based on the first set of X-ray fluoroscopy images, localizing cusp nadirs positions of a set of characteristic features (42, 44, 46) in the X-ray subsequent frames, establishing a set of markers to match the localized positions of the cusp nadirs characteristic features (42, 44, 46), and determining an optimal viewing angle of the X-ray image acquisition device (12), in which the markers of the second set of markers lie on a single line and are equidistant from each other in the X-ray field of view. This enables a precise alignment of the X-ray imaging device, especially for TAVR procedures.
Abstract:
A system (IPS) and related method for fractional flow reserve, FFR, simulation. The simulation for a range of FFR values for a vasculature portion is based on a composite transfer function which is combined from a weighted sum of global effect transfer functions he, each representing a distinct physical effect that causes a pressure drop. The weights we are gotten from a previous training phase against pressure pi versus flow rate fi 5 sample measurements associated with respective vasculature geometries. The simulated range of FFR values is visualized in a graphics display (GD) as a function of pressure and flow rate values within respective intervals.
Abstract:
A computer-implemented method of measuring a blood flow parameter in a vasculature, is provided. The method includes: analyzing spectral CT projection data to isolate from the spectral CT projection data, contrast agent projection data representing the flow of the injected contrast agent; sampling the contrast agent projection data at one or more regions of interest in the vasculature to provide temporal blood flow data at the one or more regions of interest; and calculating, from the temporal blood flow data, a value of one or more blood flow parameters at the one or more regions of interest.
Abstract:
An approach for denoising a medical image. A noise map, which defines an estimate of one or more statistical parameters for each pixel of the medical image, is used to modify or normalize the medical image. The modified medical image is then processed, using a machine-learning method, to produce a denoised medical image.
Abstract:
Device and Method for Evaluating Dark Field Images The present invention relates to the use of dark field X-ray images in an ablation treatment of a tumour. By acquiring dark field X-ray images displaying the region of interest targeted in the ablation treatment, information can be derived which allows taking a decision on terminating the ablation treatment. A set of dark field X-ray images is received (101), which is acquired at different time instants and comprises the region of interest. Dark field X-ray images of the set are compared (102), for example by determining difference images between the individual images. If during that comparison a change in the dark field X-ray images is detected over time in the region of interest, then a signal is generated (103) indicating a change has occurred. That signal may indicate that healthy tissue is being affected instead of the tumour and that consequently the ablation treatment should be ended.