摘要:
A plasmon-generator of the invention is configured to include a first configuration member including a near-field light generating end surface; and a second configuration member joined and integrated with the first configuration member and not including the near-field light generating end surface. The first configuration member is configured to contain Au as a primary component and to contain any one or more elements selected from a group of Co, Fe, Sb, Nb, Zr, Ti, Hf, and Ta, and is configured so that a content percentage X1 of the contained element is within a range between 0.2 at % or more and 2.0 at % or less. Thereby, thermostability, optical characteristic, and the process stability are satisfied. Also, heat dissipation and heat generation suppression effect are extremely superior.
摘要:
A thermally-assisted magnetic recording head includes a magnetic pole and a heating element. The magnetic pole has a front end face located in a medium facing surface. The magnetic pole forms on a track a distribution of write magnetic field strength that peaks at a first position on the track. The heating element forms on the track a distribution of temperature that peaks at a second position on the track. The first position is located on the trailing side relative to the second position. The front end face of the magnetic pole has a main portion and first and second extended portions. The first and second extended portions are extended in the track width direction from the main portion at positions on the leading side relative to the center of the main portion in the direction of travel of a magnetic recording medium.
摘要:
The present invention provides a thermally assisted magnetic head with improved recording performance. The thermally assisted magnetic head includes a recording element and a near-field light generating element. The recording element includes a main pole appearing on a medium-facing surface, and a bit inversion starting region intended to be a maximum recording magnetic field generating position is formed at a leading edge of the main pole. The near-field light generating element is located on a leading side of the main pole and capable of creating a heating spot due to a near-field light on a near-field light generating end face appearing on the medium-facing surface. The bit inversion starting region is located within one-half of a diameter of the heating spot from a center of the heating spot.
摘要:
A thermally-assisted magnetic recording head includes a medium facing surface, a magnetic pole, a waveguide including a core and a cladding, and a plasmon generator. The magnetic pole is located forward of the core in the direction of travel of a magnetic recording medium. The plasmon generator is disposed between the core and the magnetic pole. The core has an evanescent light generating surface facing toward the plasmon generator. The plasmon generator has a front end face located in the medium facing surface, a flat surface facing toward the'evanescent light generating surface, and first and second side surfaces that are at a distance from each other and are located farther from the evanescent light generating surface than is the flat surface.
摘要:
A thermally-assisted magnetic recording head includes: a medium facing surface; a magnetic pole; a waveguide including a core and a cladding; a plasmon generator; and a protruding member. The protruding member is disposed between the medium facing surface and a front end face of the core facing toward the medium facing surface. The protruding member has a first end face located in the medium facing surface, and a second end face facing toward the front end face of the core and receiving light having propagated through the core and passed through the front end face. The protruding member is formed of a metal different from both a material forming the magnetic pole and a material forming the plasmon generator. The protruding member is heated and expanded by the light received at the second end face, so that the first end face gets protruded toward a magnetic recording medium.
摘要:
Provided is a thin film magnetic head capable of suppressing an occurrence of a track erase, decreasing an influence on a magnetoresistive element caused by a magnetic flux generated from a thin film coil, and further decreasing the parasitic capacity. The thin film magnetic head has, in order in a stacked direction, a first magnetic shield layer, a magnetoresistive element, a second magnetic shield layer, a third magnetic shield layer, a main magnetic pole layer and a return yoke layer. A width in a track width direction of at least one of the first and the second magnetic shield layers is smaller than widths in a track width direction of the third magnetic shield layer and the return yoke layer.
摘要:
A pole layer incorporates a track width defining portion and a wide portion. The track width defining portion has an end face that is located in the medium facing surface and that defines the track width. The maximum width of the wide portion is greater than the track width and equal to or greater than the length of the wide portion taken in the direction orthogonal to the medium facing surface. When the coil is generating no magnetic field, in the end face of the track width defining portion, there exist first and second regions in which the directions of components of magnetization orthogonal to the medium facing surface are opposite.
摘要:
A current-perpendicular-to-plane magneto-resistive element includes a magneto-resistive film and a pair of upper and lower magnetic shielding films holding the magneto-resistive film therebetween for current feeding. The lower magnetic shielding film has an at least two-layer structure including a crystalline material layer and an amorphous material layer disposed below the crystalline material layer.
摘要:
A perpendicular magnetic recording element includes a recording magnetic pole film and a write shield film. The recording magnetic pole film has a yoke portion and a main magnetic pole for perpendicular recording. The main magnetic pole projects from a front end of the yoke portion to have an end on a medium-facing surface. The write shield film faces the recording magnetic pole film and has a height equal to or smaller than that of the recording magnetic pole film, as measured rearward from the medium-facing surface.
摘要:
The present invention provides a thin film magnetic head capable of satisfying both assurance of recording performance and assurance of reproduction performance. In the case where a lower magnetic layer is formed of an iron cobalt alloy (for example, Fe65Co35) which contains iron in a range of 60 at % to 80 at % and has extremely high saturation magnetic flux density of 2.4 T or higher, a head isolation layer formed of ruthenium (Ru) is provided between the lower magnetic layer and an upper read shield layer portion. As compared with the case where the head isolation layer is not provided between the lower magnetic layer and the upper read shield layer portion, the strength of a recording magnetic field increases and a reproduction output of an MR element is stabilized.
摘要翻译:本发明提供了能够满足记录性能的保证和再现性能的保证的薄膜磁头。 在下面的磁性层由铁含量在60%至80%范围内的铁钴合金(例如,Fe 65 N 3+ 35)形成的情况下 at%,并且具有2.4T以上的极高饱和磁通密度,在下磁性层和上部读屏蔽层部分之间设置由钌(Ru)形成的磁头隔离层。 与在下部磁性层和上部读取屏蔽层部分之间没有设置磁头隔离层的情况相比,记录磁场的强度增加,MR元件的再现输出稳定。