Abstract:
A magnetic head includes a main pole, a trailing shield, and a spin torque oscillator. A top surface of the main pole includes a first inclined portion, a second inclined portion, and a third inclined portion arranged in order of closeness to a medium facing surface. Each of the first to third inclined portions has a front end closest to the medium facing surface and a rear end farthest from the medium facing surface. Each of the first to third inclined portions is inclined relative to the medium facing surface and a direction orthogonal to the medium facing surface so that its rear end is located forward relative to its front end in a direction of travel of a recording medium.
Abstract:
A write shield of a magnetic head includes a pair of first side shields and a pair of second side shields. The pair of first side shields each include a first side wall and a second side wall. The pair of second side shields each include a third side wall. The third side wall of one of the pair of second side shields is continuous with the first side wall of one of the pair of first side shields. The third side wall of the other of the pair of second side shields is continuous with the first side wall of the other of the pair of first side shields.
Abstract:
A magnetic head includes a medium facing surface, a main pole, a trailing shield, and a spin torque oscillator. A bottom surface of the trailing shield includes a first portion that includes an end located in the medium facing surface and is in contact with the spin torque oscillator at least in part. An element height that is a dimension of the spin torque oscillator in a direction perpendicular to the medium facing surface and a writer height that is a dimension of the first portion in the direction perpendicular to the medium facing surface are different from each other.
Abstract:
A magnetic head includes a main pole, a trailing shield, a spin torque oscillator, and a buffer layer. The buffer layer is interposed between the main pole and the spin torque oscillator. The spin torque oscillator has first and second side surfaces. The first and second side surfaces respectively form first and second angles with respect to a direction perpendicular to a top surface of a substrate. The first and second angles each fall within a range of 0° to 10°. The buffer layer has third and fourth side surfaces. The third side surface includes a first inclined portion forming a third angle greater than the first angle. The fourth side surface includes a second inclined portion forming a fourth angle greater than the second angle.
Abstract:
A first side shield has a first sidewall and a second sidewall, and a second side shield has a third sidewall and a fourth sidewall. The first to fourth sidewalls have first to fourth edges, respectively, that are farthest from a top surface of a substrate. The distance between a rear end of the first edge and a rear end of the third edge in a track width direction is greater than the distance between a front end of the first edge and a front end of the third edge in the track width direction. The distance between the second edge and the fourth edge in the track width direction increases with increasing distance from the medium facing surface.
Abstract:
A magnetic head includes a coil, and a magnetic path forming section for defining a first space for a portion of the coil to pass through. The magnetic path forming section includes a core section. The coil includes a first winding portion and a second winding portion connected in series. The first winding portion includes one or two first coil elements extending to pass through the first space, and extends once or twice around the entire perimeter of the core section. The second winding portion does not pass through the first space, and extends less than once around the entire perimeter of the core section to rotate n degrees about a center point of the core section, where n is greater than 270 and smaller than 360.
Abstract:
A magnetic head includes a medium facing surface, a coil, a main pole, a write shield, and a first and a second return path section. The first return path section is located on the leading side of the main pole. The coil includes a specific coil element passing through a space defined by main pole, a gap section, write shield and first return path section. The main pole has a bottom end including a first portion and a second portion, the second portion being farther from medium facing surface than is the first portion. The specific coil element has a rear end farthest from medium facing surface. The distance from medium facing surface to rear end of the specific coil element is smaller than or equal to the distance from the medium facing surface to the boundary between the first portion and the second portion.
Abstract:
A composite material structure reinforced against stress concentration in peripheral edge portions of holes and enabled to be reduced in weight. A wing (1) is formed in a box structure. A lower surface outer plate (3) of the wing (1) includes: a center section (3b) made of metal extending in one direction and having access holes (5) formed therein; a front section (3a); and a rear section (3c) made of fiber reinforced plastics extending in the one direction and connected to both side portions of the center section (3b). As the metal used for the center section (3b), a titanium alloy or an aluminum alloy is suitable.
Abstract:
A magnetic head includes a main pole, a write shield, and a gap section. The write shield includes a trailing shield. The trailing shield includes a first portion, a second portion, a third portion and a fourth portion. The second portion and the third portion are located on opposite sides of the first portion in the track width direction. Top surfaces of the first to third portions are coplanar with each other. The fourth portion lies on the top surfaces of the first to third portions. The first portion is higher in saturation flux density than the second to fourth portions.
Abstract:
A system and method are disclosed to prevent a reduction in the number of I/O devices which can be connected when building a PCIe topology by connecting I/O devices to a computer via a PCIe switch. A switch with which a computer and I/O devices are connected includes: a first PCI-PCI bridge which is positioned on the computer side; a second PCI-PCI bridge which is positioned on the I/O device side; trapper units which trap packet data which is inputted into the switch; a packet routing unit which transfers packet data to the I/O devices; and a management processor which is connected to the trapper units and provides the computer a virtual PCI-PCI bridge and a virtual link by execution of a program. The trapper units adjudicate the destination of the packet data which is transferred from the computer.