Abstract:
A pipe gripping apparatus has a first jaw with a pipe-contacting surface at one end thereof, a second jaw having a pipe-contacting surface at one end thereof, a tongue having a pipe-contacting surface at one end thereof, and an actuator connected to the first and second jaws and to the tongue. The actuator serves to move the first and second jaws and the tongue such that the pipe-contacting surfaces thereof move radially inwardly simultaneously for a substantially identical distance. A first link pivotally connects the tongue with the first jaw. A second link pivotally connects the tongue with the second jaw. The first and second links extend angularly outwardly from the tongue. The first and second pivot points of each jaw have a distance unequal to a distance between the first pivot point and pipe-contacting surface of each jaw. The pipe-contacting surfaces can be elastomeric pads, toothed dies, or rollers.
Abstract:
A tubular handling apparatus has a main rotating structural member pivotally movable between a first position and a second position, an arm interconnected to the main rotating structural member, and a gripper mechanism affixed to an end of the arm opposite the main rotating structural member. The gripper mechanism has a stab frame, a first gripper translatably attached to a side of the stab frame, and a second gripper translatably attached to the side of the stab frame below the first gripper. A connection bar is connected to the first and second grippers so as to translate the grippers for a substantially identical distance. A translating mechanism translates the grippers along the side of the stab frame.
Abstract:
A pre-loading system for a pipe handling apparatus in which a boom is pivotally mounted at one end to a skid and in which an arm is connected to an opposite end of the boom. The pre-loading system has a tensioning assembly with one end affixed to the arm and an opposite end fixedly mounted so as to apply tension to the arm when the arm has a load applied to an end of the arm opposite the boom. The tensioning assembly includes a first cable assembly having one end connected to the arm and an opposite end fixedly mounted, and a second cable assembly connected to the arm and having an opposite end fixedly mounted. The first and second cable assemblies extend from opposite sides of the arm.
Abstract:
A pipe handling apparatus has a frame, a boom pivotally connected to the frame so as to be movable between a first position and a second position, an arm extending outwardly of the boom when the boom is in the second position, a gripper affixed to the end of the arm opposite the boom, a first line having a first end affixed to the boom, a second line interconnected to an opposite end of the first line and connected to the frame, and an actuator interconnected to the first and second lines. The actuator changes an angular relationship of the first and second lines so as to selectively tension the lines. The second line includes a first cable offset from linear alignment with the first line and a second cable extending in angular relationship with the first cable.
Abstract:
A pipe handling apparatus has a supporting structure, an arm pivotally interconnected to the supporting structure such that the supporting structure and the arm are movable between a first position and a second position within a single degree of freedom, and a stiffener cooperative with the arm when the arm and the supporting structure are in the second position. The stiffener applies a mechanical resistance to the arm in the second position. The second position is at an end of the travel of the supporting structure and the arm. The stiffener applies a variable resistance to the arm as the arm moves from the first position to the second position. This variable resistance is at its greatest when the arm is in the second position.
Abstract:
The present invention relates to a new apparatus and method for use in subterranean exploration. The present invention provides a rapid rig-up and rig-down of a drill floor mounted device such as a pipe racking system. In particular, the present invention discloses a system and method for rapid deployment of a drill floor mounted pipe racking system that is capable of being retrofit to an existing drilling rig.
Abstract:
The present invention relates to a new apparatus and method for use in subterranean exploration. The present invention provides a rapid rig-up and rig-down of a drill floor mounted device such as a pipe racking system. In particular, the present invention discloses a system and method for rapid deployment of a drill floor mounted pipe racking system that is capable of being retrofit to an existing drilling rig.
Abstract:
The present invention relates to a mechanically steered articulating dolly transport system for transporting large structures such as a drilling mast over the federal highway system. Generally, the invention relates to an articulating dolly system that utilizes a unique mechanical system for steering a first dolly with a path generated by the movement of the load held by the second dolly. More particularly, the invention provides a front dolly steered by a non-rotatable front steering frame, a rear dolly having a pivotally mounted turntable and a pair of steering links connected between the respective sides of the front steering frame and the turntable. The left steering link and the right steering link are located in a first plane. One or both of the turntable and the steering frame being located on a second plane that is not the first plane. Moment forces generated between plane one and plane two elastically deform one or both of the steering frame and the turntable to permit the transport system to make a left-hand or right-hand turn.
Abstract:
A pipe handling apparatus has a frame, a boom pivotally connected to the frame so as to be movable between a first position and a second position, an arm extending outwardly of the boom when the boom is in the second position, a gripper affixed to the end of the arm opposite the boom, a first line having a first end affixed to the boom, a second line interconnected to an opposite end of the first line and connected to the frame, and an actuator interconnected to the first and second lines. The actuator changes an angular relationship of the first and second lines so as to selectively tension the lines. The second line includes a first cable offset from linear alignment with the first line and a second cable extending in angular relationship with the first cable.
Abstract:
The present invention discloses a drill rig relocation system. Lift frames are provided at opposite ends of a base box of a drill rig substructure. A lift cylinder and bearing mat assembly are rotatably connected beneath the lift frame. The bearing mat assemblies may be rotated to the desired direction for moving the drill rig. The lift cylinders are then expanded, placing the bearing mat assemblies onto the ground and lifting the base boxes and drill rig off the ground. The drill rig is supported on linear sleeve bearings slideably mounted in the bearing mat assemblies. Translation cylinders on the bearing mats expanded to move the rig by translating the linear sleeve bearings along the shafts. After the lift cylinder expands to place the bearing mat on the ground, the translation cylinders are retracted, providing the linear bearing with the full length of the shaft for the next movement.