Abstract:
A coolant bonnet for a cutting tool includes a head portion, a shank portion, an internal coolant passage extending through the shank portion and into a coolant manifold disposed within the head portion, and one or more coolant ducts extending radially outward from the manifold to an outlet port. Each coolant duct is aligned with the chip flutes of the cutting tool and directs coolant at a predetermined exit angle in an axially rearward direction toward the cutting edges of a cutting insert mounted on the cutting tool. A method of providing coolant to a cutting edge of a cutting insert mounted on the cutting tool is also disclosed.
Abstract:
A clamp assembly to secure a cutting insert to a holder that includes a clamp that has a distal end and a clamp projection depending from the distal end of the clamp. There is a coolant plate that has a top plate surface and a bottom plate surface wherein the top plate surface contains a recess that receives the clamp projection upon assembly of the clamp and the coolant plate. The bottom plate surface contains a bowl having an open bowl end wherein in operation the bowl directs coolant through the open bowl end toward the cutting insert. The assembly has a positioner extending between the clamp and the coolant plate so as to maintain a position of the clamp relative to the coolant plate upon the assembly of the clamp and the coolant plate.
Abstract:
A cutting assembly that includes a holder containing a coolant delivery passage, and a locking pin, which has a longitudinal locking pin bore in communication with the coolant delivery passage. A clamp assembly attaches to the holder and engages a cutting insert. The clamp assembly has a diverter plate with an integral boss, which has a central boos bore, and an interior passage wherein the central boss bore is in communication with the interior passage. The longitudinal locking pin bore opens to the central boss bore whereby coolant flows into the central boss bore and to the interior passage exiting the interior passage toward the cutting insert.
Abstract:
A cutting assembly useful for the chipforming removal of material from a workpiece at the cutting insert-workpiece interface. The cutting assembly has a holder with a coolant passage and a seat. As one option, a stud extends away from the seat and facilitates coolant flow to an insert locking cap, which attaches to the stud. The insert locking cap directs coolant flow toward the cutting insert-workpiece interface. As another option, a diverter plate has a bottom surface with a bowl and an arcuate forward surface with one or more openings. Coolant flows from the coolant passage into the bowl then exits through at least one opening in the arcuate forward surface towards the cutting insert-workpiece interface.
Abstract:
A rotary cutting tool with enhanced bump-off capability is disclosed. The cutting tool includes a tool shank having a pocket. A replaceable cutting head is at least partially disposed within the pocket of the tool shank with an interference fit. A coupling pin assembly is at least partially received within a bore of the tool shank. The coupling pin assembly comprises a sleeve member and a coupling pin at least partially disposed within the sleeve member. The sleeve member includes an upper portion and a lower portion having a non-circular cross-sectional shape with a bump-off surface. An actuation screw contacts the coupling pin assembly and causes the replaceable cutting head to move relative to the tool shank. The bump-off surface of the lower portion of the sleeve member extends radially outward with respect to the coupling pin by a distance, D, thereby providing enhanced bump-off capability.
Abstract:
A clamp assembly to secure a cutting insert to a holder that includes a clamp that has a distal end and a clamp projection depending from the distal end of the clamp. There is a coolant plate that has a top plate surface and a bottom plate surface wherein the top plate surface contains a recess that receives the clamp projection upon assembly of the clamp and the coolant plate. The bottom plate surface contains a bowl having an open bowl end wherein in operation the bowl directs coolant through the open bowl end toward the cutting insert. The assembly has a positioner extending between the clamp and the coolant plate so as to maintain a position of the clamp relative to the coolant plate upon the assembly of the clamp and the coolant plate.
Abstract:
An indexable drill assembly includes a drill body, which has a head portion at the axial forward end thereof and wherein the head portion has an outboard pocket and an inboard pocket. The drill body contains an outboard pocket coolant channel adjacent the outboard pocket and an inboard pocket coolant channel adjacent the inboard pocket. The outboard pocket has a seating surface and the outboard pocket coolant channel opening at the seating surface. The drill body further contains an outboard retention screw aperture opening in the seating surface wherein the seating surface contains an outboard coolant ring surrounding the retention screw aperture wherein the outboard coolant is being in fluid communication with the outboard pocket coolant channel. The inboard pocket has a seating surface and the inboard pocket coolant channel opens at the seating surface. The drill body further contains an inboard retention screw aperture opening in the seating surface wherein the seating surface contains an inboard coolant ring surrounding the inboard retention screw aperture wherein the inboard coolant ring is in fluid communication with the inboard pocket coolant channel. The drill assembly further includes an indexable outboard cutting insert retained in the outboard pocket, and an indexable inboard cutting insert retained in the inboard pocket.
Abstract:
A cutting insert includes a polygonal body having an upper chip surface, a bottom surface and peripheral side surfaces extending between the upper chip surface and the bottom surface, the peripheral side surfaces intersecting the upper chip surface to form cutting edges therewith. A plurality of chip dividers are spaced apart about a perimeter of the upper chip surface to divide the chips produced by the cutting edges, each chip divider including a leading chip dividing portion adjacent to the cutting edge and extending generally upwardly from the cutting edge, the leading chip dividing portion having an elongated, rounded face. Adjacent chip dividers define a pocket such that the pockets are configured for promoting curling of chips produced by the cutting edges.