Abstract:
A communications apparatus, such as a portable radiotelephone, comprises a housing (40) containing a printed circuit board (PCB) (12) having a ground plane (16) and electronic components in rf shields (18) thereon. A planar antenna (10), for example a planar inverted-L antenna (PILA), is mounted spaced from the ground plane and a dielectric (14), for example, air, is present in a space between the PCB and the planar antenna. A feed (36) couples the planar antenna (10) to the rf components. The feed comprises parallel L-C resonator circuit components (42), a transmission line, or any other predominantly reactive network for reactively tuning the antenna. In the case of a dual band antenna the components are selected so that a lower frequency is tuned inductively and a higher frequency is tuned capacitively. The components, which may be discrete or distributed, are mounted on the PCB or a part of the planar antenna structure which is not subject to detuning by the user in normal operation of the apparatus.
Abstract:
A wireless terminal having a dual band antenna arrangement which comprises a planar inverted-F antenna (10) having a first (12) for signals in a first, lower frequency band, for example the GSM band, a second feed (14) for signals in a second, higher frequency band, for example the DCS band, and a ground pin (16). A first coupling stage (26A) couples the transmit and receive paths of a first transceiver (GSM) to the first feed and a second coupling stage (26B) couples the transmit and receive paths of a second transceiver (DCS) to the second feed. Each of the first and second coupling stages comprise a quarter wavelength transmission line (50A, 50B) having a first end coupled to the respective transmit signal path and a second end coupled by band pass filter (52A, 52B) to the respective receive signal path. A first PIN diode (D1, D3) couples a transmit signal path to the first end of the respective quarter wavelength transmission line and to the respective feed (12, 14) and a second PIN diode (D2, D4) second end of the respective quarter wavelength transmission line to ground. In operation when transmitting in one of the bands, the first and second PIN diodes of the relevant coupling stage are switched-on, whilst the PIN diodes in the other coupling stage are off and when in a receiving mode all the PIN diodes are off. The signal being received by one of the transceivers is reflected by the band pass filter in the coupling stage of the other transceiver.
Abstract:
An antenna diversity arrangement (200) comprises a plurality of antennas (204a, 204b) capable of forming a plurality of antenna beams. The amplitude and phase relationships between the signals driving each of the antennas (204a, 204b) are first determined for an arrangement where each antenna is replaced by a point source. The results of this analysis are then transformed by reference to the characteristics of the real antenna arrangement (200) to determine appropriate driving signals. The resultant antenna diversity arrangements (200) can have antennas (204a, 204b) located arbitrarily close to one another with near-zero correlation between any pair of the antenna beams, thereby providing a compact and effective arrangement.
Abstract:
An RF device includes a substrate and a series circuit of a tunable RF component and a DC blocking capacitor. The series circuit is arranged on the substrate and couples an RF signal terminal to a fixed voltage terminal that is electrically isolated from the RF signal terminal. The tunable RF component is coupled to the RF signal terminal, the DC blocking capacitor is coupled to the fixed voltage terminal and a driver terminal is coupled to the tunable RF component.
Abstract:
A communication system transmits signals having frequencies that lie within a transmission band and receives signals having frequencies that lie within a reception band. The system includes a duplexer and an antenna. The duplexer includes a transmission branch and a reception branch. The transmission branch includes a transmission filter, a transmission phase shifting network and a transmission matching network. The reception branch includes a reception filter, a reception phase shifting network and a reception matching network. The transmission matching network and the reception matching network have predominately constant phase shifts over frequencies within the reception band and within the transmission band, respectively. The antenna is coupled to the transmission matching network and to the reception matching network, and shows a predominantly reactance-only impedance variation over frequencies in the transmission band and over frequencies in the reception band.
Abstract:
A method of matching a receive-only antenna (60) for use in receiving video signals in which measurements made on a transceiver's antenna (14) when in an transmitting mode are used in matching the receive-only antenna. The ratio of the amplitude of the reflected signal to the strength of the transmitted signal strength is used not only in selecting components for matching the transceiver's antenna (14) but also in selecting components for matching the receive-only antenna (60). The ratio may be applied to respective look-up tables (54, 64) for selecting the components to be used in matching the respective antennas.
Abstract:
A wireless terminal for use in the transmitting and receiving frequency bands of a frequency duplex system comprises transmitting and receiving stages (Tx, Rx) and signal propagating means (22, 24, 26) coupled to the transmitting and receiving stages. The signal propagating means comprises a narrow band antenna structure (24), such as a Planar Inverted-F Antenna (PIFA), having sufficient bandwidth to cover the larger one of the transmitting and receiving frequency bands and a BAW receiving filter (26) and a BAW transmitting filter (22) coupled by respective feeds to the antenna structure (24). The filters (22, 26) enable the antenna structure to have a small volume and be reusable at different FDD frequencies.
Abstract:
In a body-worn personal communications apparatus, for example a wrist-carried wireless telephone, an antenna (102) is a helical or other physically-shortened electric antenna that makes use of the enhanced normal component of electric field close to the body. A microphone (114) can act as a top load to the antenna, thereby enabling the use of a shorter antenna. The antenna (102) may be formed from coaxial cable, enabling it to provide electrical connections between the microphone (114) and transceiver circuitry in the body of the apparatus. By arranging for the microphone (114) to have low impedance at radio frequencies, the coaxial cable acts as an inductive stub and enables the antenna (102) to be further shortened.
Abstract:
An antenna arrangement comprises a patch conductor (102) supported substantially parallel to a ground plane (104). The patch conductor includes first (106) and second (108) connection points, and further incorporates a slot (202) between the first and second points. The antenna can be operated in a first mode when the second connection point is connected to ground and in a second mode when the second connection point is open circuit. By connection of a variable impedance (514), for example a variable inductor, between the second connection point and the ground plane, operation of the arrangement at frequencies between the operating frequencies of the first and second modes is enabled.
Abstract:
A personal communications apparatus comprises an elongate body 202 incorporating an antenna diversity arrangement in which first and second antennas (102A, 102B) are located at opposite ends of the body.In one embodiment a microphone (114) is located at the tip of one antenna (102A) and a loudspeaker (116) at the tip of the other antenna (102B). The microphone (114) and loudspeaker (116) act as top loads to their respective antennas, thereby enabling the use of shorter antennas. The antennas (102A, 102B) may be formed from coaxial cable, enabling them to provide electrical connections between the microphone (114) or loudspeaker (116) and transceiver circuitry in the body of the apparatus. By arranging for the microphone (114) and loudspeaker (116) to have low impedances at radio frequencies, the coaxial cable acts as an inductive stub and enables the antennas (102A, 102B) to be further shortened.