Abstract:
Techniques for binarization and extraction of information from image data are disclosed. The inventive concepts include independently binarizing portions of the image data on the basis of individual features, e.g. per connected component, and using multiple different binarization thresholds to obtain the best possible binarization result for each portion of the image data. Determining the quality of each binarization result may be based on attempted recognition and/or extraction of information therefrom. Independently binarized portions may be assembled into a contiguous result. In one embodiment, a method includes: identifying a region of interest within a digital image; generating a plurality of binarized images based on the region of interest using different binarization thresholds; subjecting the region of interest within a digital image to a plurality of thresholding and extraction iterations; and extracting data from some or all of the plurality of binarized images. Corresponding systems and computer program products are disclosed.
Abstract:
In several embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. The techniques include detecting medical documents and/or documents relevant to an insurance claim by defining candidate edge points based on the captured image data and defining four sides of a tetragon based on at least some of the candidate edge points. In the case of an insurance claim process, the techniques also include determining whether the document is relevant to an insurance claim; and in response to determining the document is relevant to the insurance claim, submitting the image data, information extracted from the image data, or both to a remote server for claims processing. The image capture and processing techniques further facilitate processing of medical documents and/or insurance claims with a plurality of additional features that may be used individually or in combination in various embodiments.
Abstract:
In various embodiments, methods, systems, and computer program products for capturing and processing digital images captured by a mobile device are disclosed. The claimed algorithms are specifically configured to perform and facilitate loan application processing by capturing an image of a document using a mobile device, and analyzing the image (optionally in conjunction with additional data that may also be captured, determined, or otherwise provided to the loan application process) to determine loan-relevant information. Select loan-relevant information may be extracted, compiled, and/or analyzed to facilitate processing of the loan application. Feedback may be provided to facilitate facile application processing, e.g. by ensuring all requisite information is submitted with the loan application. Image capture and document detection are preferably performed using the mobile device, while all other functions may be performed using the mobile device, a remote server, or some combination thereof.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In various embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. Myriad features enable and/or facilitate processing of such digital images using a mobile device that would otherwise be technically impossible or impractical, and furthermore address unique challenges presented by images captured using a camera rather than a traditional flat-bed scanner, paper-feed scanner or multifunction peripheral.
Abstract:
In several embodiments, methods, systems, and computer program products for processing digital images captured by a mobile device are disclosed. The techniques include capturing image data depicting a document; defining a plurality of candidate edge points within the image data; and defining four sides of a tetragon based on at least some of the plurality of candidate edge points; wherein each side of the tetragon corresponds to a different side of the document; wherein an area of the tetragon comprises at least a threshold percentage of a total area of the digital image; and wherein the tetragon bounds the digital representation of the document.
Abstract:
Computerized techniques for improved binarization and extraction of information from digital image data are disclosed in accordance with various embodiments. The inventive concepts include rendering a digital image using a plurality of binarization thresholds to generate a plurality of binarized digital images, wherein at least some of the binarized digital images are generated using one or more binarization thresholds that are determined based on a priori knowledge regarding an object depicted in the digital image; identifying one or more connected components within the plurality of binarized digital images; and identifying one or more text regions within the digital image based on some or all of the connected components. Systems and computer program products are also disclosed.
Abstract:
Computer program products for discriminating hand and machine print from each other, and from signatures, are disclosed and include program code readable and/or executable by a processor to: receive an image, determine a color depth of the image; reducing the color depth of non-bi-tonal images to generate a bi-tonal representation of the image; identify a set of one or more graphical line candidates in either the bi-tonal image or the bi-tonal representation, the graphical line candidates including true graphical lines and/or false positives; discriminate any of the true graphical lines from any of the false positives; remove the true graphical lines from the bi-tonal image or the bi-tonal representation without removing the false positives to generate a component map comprising connected components and excluding graphical lines; identify one or more of the connected components in the component map; and output and/or display and indicator of each of the connected components.