Abstract:
The present embodiments relate to an all-in-one switch device as well as a touch display apparatus and a display panel including such an all-in-one switch device. The all-in-one switch device includes a switching transistor electrically connected between a pixel electrode and a data line, and a sensor pattern connected between a first electrode and a second electrode of the switching transistor. One device is enough to provide both a switching function for display driving and a sensor function for sensing a touch position and/or a fingerprint, a separate touch sensor having a large size is unnecessary, and it is possible to precisely sense a touch position and/or a fingerprint without being affected by parasitic capacitance, even in a situation where a system has a structure or a circuit in which touch sensing based on capacitance is impossible.
Abstract:
The present disclosure provides an in-cell touch type display device, a touch circuit, a display driver, and an in-cell touch type display device driving method, which can not only sense the position of a touch generated by the user, but also sense the touch force, with which the user presses the screen during the touch, in order to provide various functions in various types.
Abstract:
A subpixel circuit, a display panel, and a display device are disclosed. A subpixel circuit for operating a subpixel of a display panel may include: a light emitting circuit including an light emitting element to receive a high-potential voltage, the light emitting circuit being configured to control the light emitting element according to a driving voltage and to output a control voltage; a reference circuit configured to receive the control voltage and a low-potential voltage and to control a driving current flowing through the light emitting element; an amplification circuit configured to compare the control voltage and a data voltage to generate the driving voltage for controlling the light emitting circuit; and an input circuit configured to receive the data voltage and a first scan signal and to control a timing of applying the data voltage to the amplification circuit based on the first scan signal.
Abstract:
Embodiments described herein is able to provide a touch display device, an active pen, a touch system, a touch circuit, and a pen recognition method capable of efficiently providing a display function, a touch-sensing function, and a pen-touch-sensing function.
Abstract:
Embodiments of the present disclosure relate to a touch display device, a driving method, and a driving circuit. More particularly, embodiments of the present disclosure relate to a touch display device, a driving method, and a driving circuit capable of preventing touch sensitivity from being affected by display driving even though simultaneously performing the display driving and touch driving by supplying a data voltage to a plurality of data lines disposed in a display panel, supplying a common voltage to a plurality of common electrodes disposed in the display panel, displaying an image through the display panel, and supplying a common voltage to the common electrodes.
Abstract:
A touch display device, a data driving circuit, and a driving method are provided. The touch display device, the data driving circuit, and the driving method convert an image digital signal into an image analog signal in response to a gamma reference voltage which is applied to the touch electrodes arranged in the display panel and which is modulated in synchronization with a first touch electrode driving signal swinging with a first amplitude and output a data signal corresponding to the converted image analog signal to the data lines. Accordingly, it is possible to effectively simultaneously perform display and touch sensing.
Abstract:
Embodiments disclosed herein relate to a touch display panel and a touch display device. By arranging a shielding structure, which is connected to a touch electrode in a region where a touch line and a data line overlap each other or is applied with a shielding signal corresponding to a touch driving signal from an outside circuit, between the touch line and the data line, it is possible to prevent direct capacitance from being formed between the touch line and the data line, and to prevent the capacitance formed due to the data line from causing noise on a touch sensing signal. In addition, by arranging a touch load reduction layer between the shielding structure and the touch line, it is also possible to reduce the capacitance between the touch line and the data line arranged in the horizontal direction, thereby improving touch sensing performance.
Abstract:
Embodiments described herein is able to provide a touch display device, an active pen, a touch system, a touch circuit, and a pen recognition method capable of efficiently providing a display function, a touch-sensing function, and a pen-touch-sensing function.
Abstract:
The present embodiments relate to a touch technology and, more particularly, to a touch display device, which includes multiple first electrodes embedded in a display panel, at least one second electrode positioned outside the display panel, and a touch force sensing gap existing between the multiple first electrodes and the at least one second electrode, a method for driving the same, and a driving circuit for driving the multiple first electrodes and the at least one second electrode. The present embodiments, as described above, make it possible to sense not only a touch position, but also a touch force, with which the user presses the screen during a touch.
Abstract:
The present disclosure provide a display device and a display panel, the display panel including: a transistor disposed over a substrate; a first planarization layer and a second planarization layer disposed over the transistor; an anode electrode disposed in a light emitting area on the second planarization layer and electrically connected to the transistor through an anode contact hole; a touch buffer layer disposed to cover the anode electrode; a touch electrode including an overlap area overlapping a portion of the anode electrode in a non-light emitting area on the touch buffer layer; a touch line disposed under the touch electrode and electrically connected to the touch electrode through a touch contact hole; a bank covering the touch electrode and including an opening in which the light emitting area is placed; and an emission layer and a cathode electrode sequentially disposed on the anode electrode.