Abstract:
Disclosed is a display device having a display panel wherein the display device includes a plurality of gate lines and a plurality of data lines crossing each other to define a plurality of pixels in the display panel, each pixel being divided into N number of sub-pixel areas including a 2D sub-pixel and a 3D sub-pixel, wherein N is an integer and greater than 1; and a lenticular film including a plurality of lenses and attached to the display panel, wherein 3D sub-pixels on an odd-numbered horizontal line and 3D sub-pixels on an even-numbered horizontal line are alternately arranged on a line-by-line basis in a vertical direction.
Abstract:
A stereoscopic image display device for displaying a 3D stereoscopic image includes a substrate having an array of pixels thereon; and a lenticular film on the substrate, wherein alternating rows of pixels are shifted so that open areas of pixels in adjacent rows are not overlapped with respect to the vertical direction.
Abstract:
A stereoscopic display device including a barrier panel is provided. When a viewing distance of a viewer is out of the proper range, the stereoscopic display device may shift the blocking regions and the transmitting regions of the barrier panel. The stereoscopic display device may maintain the ratio of channels located within a barrier blocking region and a barrier transmitting region of the barrier panel by using the channels disposed within trigger regions of the barrier panel. Thus, the stereoscopic display device may provide a stereoscopic image of good quality to the viewer located at a region being out of the proper range.
Abstract:
A parallax barrier according to an example can include a first substrate and a second substrate, a liquid crystal layer between the first substrate and second substrate, at least one insulating layer on the first substrate, a first electrode on the second substrate, a second electrode and a third electrode on the insulating layer to generate electric field in order to transmit and block selectively an image, a plurality of first spacers on the first substrate, and a plurality of second spacers on the second substrate. The first spacers and the second spacers can be formed in regions corresponding to each to maintain gap between the first substrate and the second substrate. Further, the first spacers can be spaced apart from the corresponding second spacers by a predetermined distance.
Abstract:
A stereoscopic display device having a barrier panel is provided. The barrier panel can include channel electrodes to form transmitting regions and blocking regions in an active area, and link lines to provide a signal to the channel electrodes. The stereoscopic display device can include a display driver driving a display panel; a barrier panel on the display panel, the barrier panel including channel electrodes across an active area, and link lines disposed outside the active area; and a barrier driver controlling the channel electrodes through the link lines, wherein the number of the link lines in which each channel electrode crosses, is constant. Thus, in the stereoscopic display device, a dark spot due to a load deviation of the channel electrodes can be prevented.
Abstract:
A stereoscopic display device having a barrier panel is provided. The barrier panel may include channel electrodes across an active area. Each of the channel electrodes may include an end portion connected to corresponding link line. Each of the channel electrodes may be connected to the link line same as (n+1)th channel electrode from the channel electrode. The barrier panel may further include connecting lines to connect between opposite end portions of the channel electrode which are connected to the same link line. Thus, in the stereoscopic display device, the number of the wires extending along an edge of the active area may be reduced.
Abstract:
A stereoscopic display device including a barrier panel is provided. When a viewing distance of a viewer is out of the proper range, the stereoscopic display device may shift the blocking regions and the transmitting regions of the barrier panel. The stereoscopic display device may maintain the ratio of channels located within a barrier blocking region and a barrier transmitting region of the barrier panel by using the channels disposed within trigger regions of the barrier panel. Thus, the stereoscopic display device may provide a stereoscopic image of good quality to the viewer located at a region being out of the proper range.
Abstract:
A stereoscopic image display device is discussed, which may minimize 3D crosstalk and luminance deviation between viewing zones. The stereoscopic image display device can include a display panel that includes a first substrate having a plurality of pixels provided in a pixel region in a curved shape and a second substrate having a plurality of openings respectively overlapped with the plurality of pixels; and a lenticular lens sheet arranged above the display panel, including a plurality of lenticular lenses inclined to be parallel with the openings, wherein each of the plurality of openings is inclined at a slope parallel with one side of each pixel and has a shape different that of the pixel.
Abstract:
An array substrate includes: a substrate; first and second gate lines on the substrate; first and second common lines parallel to and spaced apart from the first and second gate lines; first and second data lines crossing the first and second gate lines and the first and second common lines; first and second thin film transistors in the pixel region; a first pixel electrode and a first common electrode alternately disposed in the first area, at least one of the first pixel electrode and the first common electrode having a bent part; and a second pixel electrode and a second common electrode alternately disposed in the second area.