Abstract:
A touch screen panel includes a substrate having a touch area and a routing wiring area, a plurality of first electrode serials formed in a first direction in the touch area, a plurality of second electrode serials which are arranged in a second direction crossing the first direction in the touch area so that the first and second electrode serials do not contact, a plurality of first routing wires which are formed in the routing wiring area and are respectively connected to one ends of the first electrode serials, and a plurality of second routing wires which are formed in the routing wiring area and are respectively connected to one ends of the second electrode serials. Odd-numbered first routing wires and even-numbered first routing wires of the first routing wires are formed on different layers.
Abstract:
Disclosed herein is a touch sensor integrated type electroluminescent display device having a plurality of gate lines and data lines crossing over each other; a plurality of pixel electrodes to which data signals are supplied through the plurality of data lines; and a touch electrode configured to overlap the plurality of pixel electrodes, wherein a touch driving signal is supplied to the touch electrode and then a touch position is detected from sensing the touch electrode.
Abstract:
An electroluminescent display device includes: a substrate including: an active area, and bezel area outside the active area and including a bending area, a first organic insulation layer (OIL) in the active area, covering a first signal line extending from the active area to the bezel area, a second OIL in the bending area, the second OIL being in a same layer as the first organic insulation film, first and second touch electrodes crossing over each other and sealing the active area on an encapsulation layer above the first OIL with a third OIL therebetween, a first signal line link pattern connected to the first signal line, and on the second OIL in the bending area, and second and third signal lines respectively connected to the first and second touch electrodes, and on the second OIL in parallel with the first signal line link pattern.
Abstract:
A display device can include an organic light emitting layer positioned between an anode electrode and a cathode electrode; an encapsulation layer disposed on the organic emission layer to protect the organic emission layer; a touch layer disposed on the sealing layer, the touch layer having a plurality of touch sensors configured to be driven according to a touch driving signal; a ground modulation signal generator configured to generate a ground modulation signal having a same amplitude as an amplitude of the touch driving signal; and a driving voltage supply configured to generate a modulated driving voltage based on the ground modulation signal, and apply the modulated driving voltage to a driving voltage supply line in synchronization with the touch driving signal within a same display frame.
Abstract:
A liquid crystal display is provided which can avoid degradation of picture quality by preventing deviations in parasitic capacitance between a data line and a pixel electrode. The liquid crystal display includes data lines and gate lines, compensation patterns covering the data lines, thin film transistors disposed at regions neighbored to crossings of the data and gate lines, pixel electrodes disposed in pixel regions defined by the crossings and respectively connected to the thin film transistors; and a common electrode disposed to overlap the pixel electrodes, One edge of each of the compensation patterns is spaced apart from the pixel electrodes by a predetermined distance.
Abstract:
An electrostatic capacitive touch screen panel includes a plurality of first touch electrodes divided in a first direction and a second direction crossing the first direction; a plurality of second touch electrodes disposed between first touch electrodes neighboring in the first direction and extending in the second direction; and a plurality of grounding/floating electrodes disposed between the first touch electrodes and second touch electrodes arranged in the second direction and extending in the second direction.
Abstract:
An electrostatic capacitive touch-sensitive panel has an active area; a touch electrode forming area; a routing wire forming area disposed; a plurality of first touch electrode lines disposed in the active area, with both ends extending to a plurality of electrode pattern extension regions; a plurality of second touch electrode lines disposed in the active area to cross the first direction so as to cross the first touch electrode lines without contact; a plurality of first routing wires connected to the plurality of first touch electrode lines, respectively; and a plurality of second routing wires connected to the plurality of second touch electrode lines, respectively. Each of the second touch electrode lines includes a plurality of second touch electrode patterns and a plurality of second connecting portions connecting neighboring second touch electrode patterns. The second touch electrode pattern has an asymmetrical portion.