Abstract:
A substrate for a display device and a display device including the same are disclosed. The substrate includes a first thin-film transistor including an oxide semiconductor layer, a second thin-film transistor spaced apart from the first thin-film transistor and including a polycrystalline semiconductor layer, and a storage capacitor including at least two storage electrodes. One of the at least two storage electrodes is located in the same layer and is formed of the same material as a gate electrode of the second thin-film transistor that is disposed under the polycrystalline semiconductor layer, and another one of the at least two storage electrodes is located above the polycrystalline semiconductor layer with at least one insulation film interposed therebetween. Accordingly, lower power consumption and a larger area of the substrate are realized.
Abstract:
Disclosed are an organic light emitting display device improving opening ratio and a method of fabricating the same. The organic light emitting display device includes a light emitting device disposed at each sub-pixel of a substrate, a pixel circuit driving the light emitting device, a bank providing a first light emitting region at a remaining region except for a region where the pixel circuit is disposed, and a second light emitting region at the region where the pixel circuit is disposed, and a color filter disposed at the first and second light emitting regions, wherein at least one of electrodes included in the pixel circuit includes a transparent conductive layer at the second light emitting region.
Abstract:
A display apparatus having a connection electrode which crosses a bending area may be provided. The connection electrode may be disposed on a device substrate including a bending area between a display area and a pad area. The connection electrode may connect the display area and the pad area across the bending area. The connection electrode may have a stacked structure of the lower connecting electrode and the upper connecting electrode. A light-emitting device, an encapsulating element and a touch electrode may be sequentially stacked on the display area of the device substrate. The upper connecting electrode may include the same material as the touch electrode. Thus, in the display apparatus, the disconnection of the connection electrode due to bending stress and external impact may be reduced.
Abstract:
A display apparatus having a connection electrode which crosses a bending area may be provided. The connection electrode may be disposed on a device substrate including a bending area between a display area and a pad area. The connection electrode may connect the display area and the pad area across the bending area. The connection electrode may have a stacked structure of the lower connecting electrode and the upper connecting electrode. A light-emitting device, an encapsulating element and a touch electrode may be sequentially stacked on the display area of the device substrate. The upper connecting electrode may include the same material as the touch electrode. Thus, in the display apparatus, the disconnection of the connection electrode due to bending stress and external impact may be reduced.
Abstract:
Disclosed are an organic light emitting display device to improve an aperture ratio, and a method of manufacturing the same. The organic light emitting display device includes a plurality of contact holes overlapping an anode of an organic light emitting element in each sub-pixel region, wherein conductive films connected through at least one of the contact holes are transparent, thus allowing regions, where the contact holes are formed, to be used as light emitting regions, thereby improving an aperture ratio.
Abstract:
Disclosed are an organic light emitting display device improving opening ratio and a method of fabricating the same. The organic light emitting display device includes a light emitting device disposed at each sub-pixel of a substrate, a pixel circuit driving the light emitting device, a bank providing a first light emitting region at a remaining region except for a region where the pixel circuit is disposed, and a second light emitting region at the region where the pixel circuit is disposed, and a color filter disposed at the first and second light emitting regions, wherein at least one of electrodes included in the pixel circuit includes a transparent conductive layer at the second light emitting region.
Abstract:
A method of manufacturing an array substrate for an FFS mode LCD device includes forming a gate line, a gate electrode and a pixel electrode on a substrate; forming a gate insulating layer; forming a data line, source and drain electrodes, and a semiconductor layer on the gate insulating layer, the drain electrode overlapping the pixel electrode; forming a passivation layer on the data line, the source and drain electrodes; forming a contact hole exposing the drain electrode and the pixel electrode by patterning the passivation layer and the gate insulating layer; and forming a common electrode and a connection pattern on the passivation layer, wherein the common electrode includes bar-shaped openings and a hole corresponding to the contact hole, and the connection pattern is disposed in the hole, is spaced apart from the common electrode and contacts the drain electrode and the pixel.