Abstract:
Exemplary embodiments of the present invention relate to a touch technology, and more specifically, to a signal control circuit, a power control circuit, a drive circuit, a timing controller, a touch system, and a touch sensitive display device and a driving method thereof that can simply swing various voltages in a display device for a touch mode period by using a modulated ground voltage obtained by swinging a ground voltage, thereby effectively providing touch driving and preventing unnecessary parasitic capacitance from being generated not only in an active area but also in all other areas.
Abstract:
A touch display device can include a substrate including a display area and a non-display area, a first touch electrode disposed on the substrate in the display area, a first touch line electrically connected to a touch pad disposed in the non-display area, a buffer layer disposed on the first touch electrode or the first touch line, a first driving transistor disposed on the buffer layer and included in a first sub-pixel overlapping the first touch electrode, a first gate line connected to the first sub-pixel, a first touch gate line disposed in parallel to the first gate line, and a first touch driving transistor disposed in the display area and controlling a connection between the first touch line and the first touch electrode.
Abstract:
A touch display device comprises a touch panel including a plurality of touch electrodes; and a touch driving circuit configured to sense one or more of the plurality of touch electrodes, wherein the touch driving circuit has an operation period including a plurality of touch intervals that includes a first sensing interval and a second sensing interval, and the first sensing interval includes at least a first time division sensing interval and the second sensing interval includes at least a second time division sensing interval, and wherein the touch driving circuit is configured to detect a pen signal output from a first pen through one or more touch electrodes of the plurality of touch electrodes during the first time division sensing interval, and detect a pen signal output from a second pen through one or more touch electrodes of the plurality of touch electrodes during the second time division sensing interval.
Abstract:
Embodiments described herein is able to provide a touch display device, an active pen, a touch system, a touch circuit, and a pen recognition method capable of efficiently providing a display function, a touch-sensing function, and a pen-touch-sensing function.
Abstract:
Disclosed is a touch screen device for transmitting pressure information based on a touch pen without a separate sensor being provided in a touch panel. The touch screen device includes a touch screen and a touch pen transmitting a pen output signal to the touch screen. The touch pen adjusts the pen output signal according to pressure which is applied thereto when the touch pen contacts the touch screen.
Abstract:
The aspects of the present disclosure relate to a touch display device, a touch system, a touch driving circuit, a pen, and a pen sensing method, and more particularly, to a touch display device, a touch system, a touch driving circuit, a pen, and a pen sensing method, which may receive a first downlink signal and a second downlink signal output from a pen through all or some of a plurality of touch electrodes and may sense the pen based on received signal strength for each touch electrode for the first downlink signal and received signal strength for each touch electrode for the second downlink signal. According to the aspects of the present disclosure, the pen may be accurately sensed even when a user uses the pen in a tilted manner.
Abstract:
A liquid crystal display (LCD) device includes a lower substrate and an upper substrate disposed to face each other and having a liquid crystal layer interposed therebetween, black matrices provided on the lower substrate, a color filter provided between the black matrices, and a common electrode provided on the entire surface of the lower substrate, a gate line and a data line provided on the upper substrate and intersect with each other to define a pixel area, a thin film transistor (TFT) present in the pixel area of the upper substrate, and a pixel electrode electrically in contact with the TFT, wherein a sensing signal is output by detecting a change in self-capacitance between a touch object contacting the upper substrate and the gate line and the data line.
Abstract:
Disclosed is a touch screen device for transmitting button manipulation information based on a touch pen without using a separate wireless communication module. The touch screen device includes a touch screen including a plurality of touch electrodes, a touch driving circuit applying a touch electrode driving signal to the plurality of touch electrodes, and a touch pen receiving the touch electrode driving signal applied to the plurality of touch electrodes and transmitting a pen output signal to the touch screen in response to the received touch electrode driving signal. The touch pen includes at least one button, and when a user manipulates the at least one button, the touch pen adjusts the pen output signal.
Abstract:
A touch display device may include: a panel including a plurality of touch electrodes, and a touch circuit configured to: transfer a panel driving signal to the panel, and receive a pen information signal, output from a pen in response to the panel driving signal, through the panel, each of the panel driving signal and the pen information signal including a plurality of pulses, the pen information signal including one or more state sections among: an in-phase state section including pulses in phase with the pulses of the panel driving signal, an antiphase state section including pulses having a different phase from the pulses of the panel driving signal, and a passive state section distinguished from the in-phase state section and the antiphase state section.
Abstract:
Embodiments described herein is able to provide a touch display device, an active pen, a touch system, a touch circuit, and a pen recognition method capable of efficiently providing a display function, a touch-sensing function, and a pen-touch-sensing function.