Abstract:
According to an embodiment of present invention, a wireless power transmitter for a vehicle that transfers power to a wireless power comprising: a resonance circuit comprising a coil assembly and/or a capacitor, wherein the coil assembly comprises first and second bottom coils placed adjacent to each other in a line and each consisting of a single layer of 11 turns and a top coil stacked on the first and second bottom coils and consisting of a single layer of 12 turns; a frequency full bridge driver driving each of coils included in the coil assembly individually, and a placement detection unit detecting a placement of the wireless power receiver.
Abstract:
The present specification which relates to a wireless power transmission device and a control method, capable of transmitting and receiving power wirelessly comprises a power supply unit for supplying power to a receiving device to transmit power wirelessly; and a power transmission control unit for, periodically generating a waveform with a particular frequency, measuring an attenuation coefficient of the waveform at each cycle, measuring a variation in the attenuation coefficient at each cycle, and determining the type of an external material. The present invention has a technical feature wherein the power transmission control unit determines whether to transmit power wirelessly to the receiving device on the basis of the type of the external material.
Abstract:
An electronic device according to an embodiment of the present invention is configured to wirelessly receive electric power from a wireless electric power transfer device. A power reception unit of the electronic device comprises: a core having a predetermined length and having magnetic flux concentration portions formed at lengthwise side portions thereof; and a coil wound along an outer periphery of the core to form magnetic flux density in the magnetic flux concentration portions, the magnetic flux density having a magnitude equal to or larger than a predetermined value.
Abstract:
A wireless power transmitter including a power supply unit configured to supply an input voltage; a power conversion unit configured to generate wireless power based on a driving signal, generated by the supplied input voltage and a first pulse width modulation (PWM) signal, and transfer the wireless power to a wireless power receiver; and a power transmission control unit configured to receive a voltage value of a battery charged with the wireless power through a wireless network, and generate the first PWM signal based on the voltage value of the battery.