Abstract:
Provided is a refrigerator, which includes a drain pan, a drain pipe, and a drain cap. The drain pan is disposed under an evaporator, and includes a drain port through which defrosted water is discharged. The drain pipe is coupled to the drain port. The drain cap is installed inside of the drain pipe. A flip member disposed inside of the drain cap is integrally formed with the drain cap and is bendable.
Abstract:
A method for controlling a refrigerator according to an embodiment of the present invention comprises: if an ultra-low temperature compartment mode is turned on, performing control such that one of low voltage, middle voltage, high voltage, and reverse voltage is applied to the thermoelectric module according to the operation mode of the refrigerator; and if the temperature of the ultra-low temperature compartment is determined to be in a satisfactory temperature range, applying low voltage to the thermoelectric module by the control unit.
Abstract:
A refrigerator includes a first freezing cycle in which a first refrigerant circulates and having a first compressor, a first condenser, at least one first expansion mechanism, and at least one first evaporator, the first freezing cycle configured to cool freezing and refrigerating compartments, a freezing compartment sensor, a refrigerating compartment sensor, a second freezing cycle in which a second mixed refrigerant having a lower evaporation temperature than the first refrigerant circulates and having a second compressor, a second condenser, a second expansion mechanism, and a second evaporator, the second freezing cycle configured to cool a deep freezing compartment, a deep freezing compartment sensor, and a controller configured to operate the first freezing cycle and the second freezing cycle independently or simultaneously, thereby more efficiently cooling the freezing and refrigerating compartments and the deep freezing compartment.
Abstract:
A refrigerator includes a storage space, an evaporator located inside of the storage space, a grille panel assembly that partitions the storage space to separate an evaporator space, a cryogenic freezing compartment that defines an insulation space within the storage space that maintains a temperature of the insulation space less than a temperature of the storage space, and a thermoelectric module assembly located at the grille panel and configured to supply cold air to the cryogenic freezing compartment. The thermoelectric module assembly includes a thermoelectric module having a heat absorption surface and a heat generation surface, a cold sink configured to contact the heat absorption surface and located in the cryogenic freezing compartment, a heat sink configured to contact the heat generation surface and located in the evaporator space, and an insulation frame that receives the thermoelectric module and that thermally insulates the cold sink from the heat sink.
Abstract:
A refrigerator includes: a main body having a storage chamber; a door for opening and closing the storage chamber; a thermoelectric module for cooling the storage chamber; an outside temperature sensor for detecting an outside temperature; a storage chamber temperature sensor for detecting the storage chamber temperature; and a control unit for applying a voltage within a range between the maximum voltage and the minimum voltage to the thermoelectric module. The control unit applies the set voltage, not the maximum voltage, to the thermoelectric module when the outside temperature is the uppermost outside temperature range among the plurality of outside temperature ranges and thus the temperature of the control is lowered and power consumption is reduced.
Abstract:
The refrigerator includes a compressor compressing a refrigerant, a condenser condensing the refrigerant compressed in the compressor, and a dryer in which the refrigerant condensed in the condenser is introduced. The dryer removes impurities or moisture of the refrigerant. A flow adjustment part is provided on an outlet-side of the dryer to switch or control a flow direction of the refrigerant. A plurality of evaporators is connected to the flow adjustment part, and the plurality of evaporators includes a first evaporator and a second evaporator. A first refrigerant passage extends from the flow adjustment part to the first evaporator, and a second refrigerant passage extends from the flow adjustment part to the second evaporator. A guide tube extends from the dryer to one side of at least one evaporator of the plurality of evaporators to guide the refrigerant to be cooled.
Abstract:
A refrigerator and a method for controlling a refrigerator are provided. The method may include driving a refrigerating cycle including a first evaporator and a second evaporator by activating at least one compressor, supplying refrigerant to the first and second evaporators by controlling a flow adjuster, recognizing whether the refrigerant is unequally introduced into the first or second evaporator, by sensing a temperature of the first or second evaporator through at least one temperature sensor, reducing supply of the refrigerant to the first or second evaporator into which the refrigerant is unequally introduced, by adjusting the flow adjuster, storing information about an operation time of the flow adjuster, recognizing whether the at least one temperature sensor has malfunctioned, and determining an operation time of the flow adjuster according to whether the at least one temperature sensor has malfunctioned.
Abstract:
A refrigerator is provided that may include at least one compressor that compresses a refrigerant, a condenser that condenses the refrigerant compressed in the at least one compressor, a refrigerant tube that guides the refrigerant condensed in the condenser, a plurality of evaporation passages, in which expansion devices may be respectively disposed, the plurality of evaporation passages branching from the refrigerant tube, a flow adjuster disposed in the refrigerant tube to supply the refrigerant into at least one evaporation passage of the plurality of evaporation passages, a plurality of evaporators, respectively, connected to the plurality of evaporation passages to evaporate the refrigerant decompressed in the plurality of expansion devices, and a liquid refrigerant supply device disposed at an outlet-side of the condenser to separate a liquid refrigerant of the refrigerant heat-exchanged in the condenser, thereby supplying the liquid refrigerant into the flow adjuster.
Abstract:
A refrigerator includes a compressor compressing a refrigerant, a condenser condensing the refrigerant compressed in the compressor, a refrigerant tube guiding a flow of the refrigerant condensed in the condenser, an expansion device decompressing the refrigerant condensed in the condenser, and an evaporator evaporating the refrigerant decompressed in the expansion device. The evaporator includes an evaporation tube through which the refrigerant decompressed in the expansion device flows, a coupling tube through a refrigerant heat-exchanged with the refrigerant of the evaporator flows, and a heat-exchange fin coupled to the evaporation tube and the coupling tube.
Abstract:
The refrigerator includes a compressor compressing a refrigerant, a condenser condensing the refrigerant compressed in the compressor, and a dryer in which the refrigerant condensed in the condenser is introduced. The dryer removes impurities or moisture of the refrigerant. A flow adjustment part is provided on an outlet-side of the dryer to switch or control a flow direction of the refrigerant. A plurality of evaporators is connected to the flow adjustment part, and the plurality of evaporators includes a first evaporator and a second evaporator. A first refrigerant passage extends from the flow adjustment part to the first evaporator, and a second refrigerant passage extends from the flow adjustment part to the second evaporator. A guide tube extends from the dryer to one side of at least one evaporator of the plurality of evaporators to guide the refrigerant to be cooled.